» Articles » PMID: 28497787

Locus-specific Histone Deacetylation Using a Synthetic CRISPR-Cas9-based HDAC

Overview
Journal Nat Commun
Specialty Biology
Date 2017 May 13
PMID 28497787
Citations 112
Authors
Affiliations
Soon will be listed here.
Abstract

Efforts to manipulate locus-specific histone acetylation to assess their causal role in gene expression and cellular and behavioural phenotypes have been impeded by a lack of experimental tools. The Cas9 nuclease has been adapted to target epigenomic modifications, but a detailed description of the parameters of such synthetic epigenome remodellers is still lacking. Here we describe a Cas9-based histone deacetylase (HDAC) and the design principles required to achieve locus-specific histone deacetylation. We assess its range of activity and specificity, and analyse target gene expression in two different cell types to investigate cellular context-dependent effects. Our findings demonstrate that the chromatin environment is an important element to consider when utilizing this synthetic HDAC.

Citing Articles

Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells.

Guerra-Resendez R, Lydon S, Ma A, Bedford G, Reed D, Kim S ACS Synth Biol. 2025; 14(2):384-397.

PMID: 39898483 PMC: 11854388. DOI: 10.1021/acssynbio.4c00569.


Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.

Azeez S, Hamad R, Hamad B, Shekha M, Bergsten P Front Genome Ed. 2024; 6:1509924.

PMID: 39726634 PMC: 11669675. DOI: 10.3389/fgeed.2024.1509924.


Epigenetics of Hypertensive Nephropathy.

Zhang Y, Arzaghi H, Ma Z, Roye Y, Musah S Biomedicines. 2024; 12(11).

PMID: 39595187 PMC: 11591919. DOI: 10.3390/biomedicines12112622.


Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation.

Ankill J, Zhao Z, Tekpli X, Kure E, Kristensen V, Mathelier A PLoS Comput Biol. 2024; 20(11):e1012565.

PMID: 39556603 PMC: 11611269. DOI: 10.1371/journal.pcbi.1012565.


A Manual for Genome and Transcriptome Engineering.

Doctor Y, Sanghvi M, Mali P IEEE Rev Biomed Eng. 2024; 18:250-267.

PMID: 39514364 PMC: 11875898. DOI: 10.1109/RBME.2024.3494715.


References
1.
Shalem O, Sanjana N, Zhang F . High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015; 16(5):299-311. PMC: 4503232. DOI: 10.1038/nrg3899. View

2.
Mali P, Aach J, Stranges P, Esvelt K, Moosburner M, Kosuri S . CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8. PMC: 3818127. DOI: 10.1038/nbt.2675. View

3.
Konermann S, Brigham M, Trevino A, Hsu P, Heidenreich M, Cong L . Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013; 500(7463):472-476. PMC: 3856241. DOI: 10.1038/nature12466. View

4.
Liu J, Francke U . Identification of cis-regulatory elements for MECP2 expression. Hum Mol Genet. 2006; 15(11):1769-82. DOI: 10.1093/hmg/ddl099. View

5.
Arrar M, de Oliveira C, McCammon J . Inactivating mutation in histone deacetylase 3 stabilizes its active conformation. Protein Sci. 2013; 22(10):1306-12. PMC: 3795489. DOI: 10.1002/pro.2317. View