» Articles » PMID: 28429782

Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS for Hydrogen Evolution

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Apr 22
PMID 28429782
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS catalysts. However, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduce a scalable route towards generating S-vacancies on the MoS basal plane using electrochemical desulfurization. Even though sulfur atoms on the basal plane are known to be stable and inert, we find that they can be electrochemically reduced under accessible applied potentials. This can be done on various 2H-MoS nanostructures. By changing the applied desulfurization potential, the extent of desulfurization and the resulting activity can be varied. The resulting active sites are stable under extended desulfurization durations and show consistent HER activity.

Citing Articles

Enhancing electrocatalytic hydrogen evolution engineering unsaturated electronic structures in MoS.

Zhou Q, Hu H, Chen Z, Ren X, Ma D Chem Sci. 2025; 16(4):1597-1616.

PMID: 39776652 PMC: 11701923. DOI: 10.1039/d4sc07309f.


Defect dependent electronic properties of two-dimensional transition metal dichalcogenides (2H, 1T, and 1T' phases).

Hanedar B, Onbasli M Phys Chem Chem Phys. 2024; 27(4):1809-1818.

PMID: 39692347 PMC: 11698123. DOI: 10.1039/d4cp04017a.


Enhancing hydrogen evolution reaction activity through defects and strain engineering in monolayer MoS.

Nadarajan R, Dey S, Kayal A, Mitra J, Shaijumon M Chem Sci. 2024; .

PMID: 39416290 PMC: 11474668. DOI: 10.1039/d4sc04874a.


Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts.

Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B Molecules. 2024; 29(18).

PMID: 39339299 PMC: 11434429. DOI: 10.3390/molecules29184304.


Dynamic STEM-EELS for single-atom and defect measurement during electron beam transformations.

Roccapriore K, Torsi R, Robinson J, Kalinin S, Ziatdinov M Sci Adv. 2024; 10(29):eadn5899.

PMID: 39018401 PMC: 466940. DOI: 10.1126/sciadv.adn5899.


References
1.
Sim D, Kim M, Yim S, Choi M, Choi J, Yoo S . Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano. 2015; 9(12):12115-23. DOI: 10.1021/acsnano.5b05173. View

2.
Voiry D, Fullon R, Yang J, de Carvalho Castro E Silva C, Kappera R, Bozkurt I . The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater. 2016; 15(9):1003-9. DOI: 10.1038/nmat4660. View

3.
Lukowski M, Daniel A, Meng F, Forticaux A, Li L, Jin S . Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013; 135(28):10274-7. DOI: 10.1021/ja404523s. View

4.
Norskov J, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J, Bligaard T . Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B. 2024; 108(46):17886-17892. DOI: 10.1021/jp047349j. View

5.
Tsai C, Abild-Pedersen F, Norskov J . Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014; 14(3):1381-7. DOI: 10.1021/nl404444k. View