6.
Casanova-Chafer J, Garcia-Aboal R, Atienzar P, Feliz M, Llobet E
. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS Appl Mater Interfaces. 2022; 14(51):57122-57132.
PMC: 9801382.
DOI: 10.1021/acsami.2c15716.
View
7.
Li H, Tsai C, Koh A, Cai L, Contryman A, Fragapane A
. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater. 2015; 15(1):48-53.
DOI: 10.1038/nmat4465.
View
8.
Vorotnikova N, Vorotnikov Y, Novozhilov I, Syrokvashin M, Nadolinny V, Kuratieva N
. 23-Electron Octahedral Molybdenum Cluster Complex [{MoI}Cl]. Inorg Chem. 2017; 57(2):811-820.
DOI: 10.1021/acs.inorgchem.7b02760.
View
9.
Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M
. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014; 14(11):6275-80.
DOI: 10.1021/nl502603d.
View
10.
Wang Y, Duan L, Deng Z, Liao J
. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. Sensors (Basel). 2020; 20(23).
PMC: 7729516.
DOI: 10.3390/s20236781.
View
11.
Rodenes M, Gonell F, Martin S, Corma A, Sorribes I
. Molecularly Engineering Defective Basal Planes in Molybdenum Sulfide for the Direct Synthesis of Benzimidazoles by Reductive Coupling of Dinitroarenes with Aldehydes. JACS Au. 2022; 2(3):601-612.
PMC: 8965831.
DOI: 10.1021/jacsau.1c00477.
View
12.
Mak K, Lee C, Hone J, Shan J, Heinz T
. Atomically thin MoS₂: a new direct-gap semiconductor. Phys Rev Lett. 2011; 105(13):136805.
DOI: 10.1103/PhysRevLett.105.136805.
View
13.
Sokolov M, Mihailov M, Peresypkina E, Brylev K, Kitamura N, Fedin V
. Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2- (X=Br, I). Dalton Trans. 2011; 40(24):6375-7.
DOI: 10.1039/c1dt10376h.
View
14.
Tsai M, Su S, Chang J, Tsai D, Chen C, Wu C
. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014; 8(8):8317-22.
DOI: 10.1021/nn502776h.
View
15.
Dybtsev D, Serre C, Schmitz B, Panella B, Hirscher M, Latroche M
. Influence of [Mo6Br8F6]2- cluster unit inclusion within the mesoporous solid MIL-101 on hydrogen storage performance. Langmuir. 2010; 26(13):11283-90.
DOI: 10.1021/la100601a.
View
16.
Renaud A, Jouan P, Dumait N, Ababou-Girard S, Barreau N, Uchikoshi T
. Evidence of the Ambipolar Behavior of Mo Cluster Iodides in All-Inorganic Solar Cells: A New Example of Nanoarchitectonic Concept. ACS Appl Mater Interfaces. 2021; 14(1):1347-1354.
DOI: 10.1021/acsami.1c17845.
View
17.
Nguyen N, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S
. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb, Mo, Ta, W, Re): inorganic 0D and 2D powders and films. Sci Technol Adv Mater. 2022; 23(1):547-578.
PMC: 9542349.
DOI: 10.1080/14686996.2022.2119101.
View
18.
Murugan P, Kumar V, Kawazoe Y, Ota N
. Assembling nanowires from Mo-S clusters and effects of iodine doping on electronic structure. Nano Lett. 2007; 7(8):2214-9.
DOI: 10.1021/nl0706547.
View
19.
Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M
. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater. 2013; 25(40):5807-13.
DOI: 10.1002/adma.201302685.
View
20.
Cao Y
. Roadmap and Direction toward High-Performance MoS Hydrogen Evolution Catalysts. ACS Nano. 2021; 15(7):11014-11039.
DOI: 10.1021/acsnano.1c01879.
View