6.
McCrory C, Jung S, Ferrer I, Chatman S, Peters J, Jaramillo T
. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc. 2015; 137(13):4347-57.
DOI: 10.1021/ja510442p.
View
7.
Hussain S, Singh J, Vikraman D, Singh A, Iqbal M, Khan M
. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Sci Rep. 2016; 6:30791.
PMC: 4974610.
DOI: 10.1038/srep30791.
View
8.
Yu Y, Huang S, Li Y, Steinmann S, Yang W, Cao L
. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014; 14(2):553-8.
DOI: 10.1021/nl403620g.
View
9.
Tsai C, Li H, Park S, Park J, Han H, Norskov J
. Electrochemical generation of sulfur vacancies in the basal plane of MoS for hydrogen evolution. Nat Commun. 2017; 8():15113.
PMC: 5530599.
DOI: 10.1038/ncomms15113.
View
10.
Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J
. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano. 2014; 8(7):7078-87.
DOI: 10.1021/nn5019945.
View
11.
Das S, Sharma U, Mukherjee B, Sasikala Devi A, Velusamy J
. Polygonal gold nanocrystal induced efficient phase transition in 2D-MoSfor enhancing photo-electrocatalytic hydrogen generation. Nanotechnology. 2022; 34(14).
DOI: 10.1088/1361-6528/acade6.
View
12.
Takahashi Y, Kobayashi Y, Wang Z, Ito Y, Ota M, Ida H
. High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. Angew Chem Int Ed Engl. 2019; 59(9):3601-3608.
DOI: 10.1002/anie.201912863.
View
13.
Del Aguila A, Liu S, Do T, Lai Z, Tran T, Krupp S
. Linearly Polarized Luminescence of Atomically Thin MoS Semiconductor Nanocrystals. ACS Nano. 2019; 13(11):13006-13014.
DOI: 10.1021/acsnano.9b05656.
View
14.
Berger T, Monllor-Satoca D, Jankulovska M, Lana-Villarreal T, Gomez R
. The electrochemistry of nanostructured titanium dioxide electrodes. Chemphyschem. 2012; 13(12):2824-75.
DOI: 10.1002/cphc.201200073.
View
15.
Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q
. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J Am Chem Soc. 2016; 138(25):7965-72.
DOI: 10.1021/jacs.6b03714.
View
16.
Ha E, Liu W, Wang L, Man H, Hu L, Tsang S
. CuZnSnS/MoS-Reduced Graphene Oxide Heterostructure: Nanoscale Interfacial Contact and Enhanced Photocatalytic Hydrogen Generation. Sci Rep. 2017; 7:39411.
PMC: 5206717.
DOI: 10.1038/srep39411.
View
17.
Li X, Li X, Zang X, Zhu M, He Y, Wang K
. Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. Nanoscale. 2015; 7(18):8398-404.
DOI: 10.1039/c5nr00904a.
View
18.
Zhu J, Wang Z, Dai H, Wang Q, Yang R, Yu H
. Boundary activated hydrogen evolution reaction on monolayer MoS. Nat Commun. 2019; 10(1):1348.
PMC: 6430794.
DOI: 10.1038/s41467-019-09269-9.
View
19.
Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T
. Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013; 13(12):6222-7.
DOI: 10.1021/nl403661s.
View
20.
Li L, Qin Z, Ries L, Hong S, Michel T, Yang J
. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS Nanosheets toward the Evolution of Hydrogen. ACS Nano. 2019; 13(6):6824-6834.
DOI: 10.1021/acsnano.9b01583.
View