» Articles » PMID: 28415794

MicroRNAs of the Mir-17~92 Cluster Regulate Multiple Aspects of Pancreatic Tumor Development and Progression

Overview
Journal Oncotarget
Specialty Oncology
Date 2017 Apr 19
PMID 28415794
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterized by resistance to currently employed chemotherapeutic approaches. Members of the mir-17~92 cluster of microRNAs (miRNAs) are upregulated in PDAC, but the precise roles of these miRNAs in PDAC are unknown. Using genetically engineered mouse models, we show that loss of mir-17~92 reduces ERK pathway activation downstream of mutant KRAS and promotes the regression of KRASG12D-driven precursor pancreatic intraepithelial neoplasias (PanINs) and their replacement by normal exocrine tissue. In a PDAC model driven by concomitant KRASG12D expression and Trp53 heterozygosity, mir-17~92 deficiency extended the survival of mice that lacked distant metastasis. Moreover, mir-17~92-deficient PDAC cell lines display reduced invasion activity in transwell assays, form fewer invadopodia rosettes than mir-17~92-competent cell lines and are less able to degrade extracellular matrix. Specific inhibition of miR-19 family miRNAs with antagomirs recapitulates these phenotypes, suggesting that miR-19 family miRNAs are important mediators of PDAC cell invasion. Together these data demonstrate an oncogenic role for mir-17~92 at multiple stages of pancreatic tumorigenesis and progression; specifically, they link this miRNA cluster to ERK pathway activation and precursor lesion maintenance in vivo and identify a novel role for miR-19 family miRNAs in promoting cancer cell invasion.

Citing Articles

LncRNA-MIR17HG mediated upregulation of miR-17 and miR-18a promotes colon cancer progression via activating Wnt/β-catenin signaling.

Yuan G, Liu B, Han W, Zhao D Transl Cancer Res. 2022; 8(4):1097-1108.

PMID: 35116852 PMC: 8798209. DOI: 10.21037/tcr.2019.06.20.


Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma.

Supadmanaba I, Mantini G, Randazzo O, Capula M, Muller I, Cascioferro S Epigenetics. 2021; 17(4):381-404.

PMID: 34057028 PMC: 8993068. DOI: 10.1080/15592294.2021.1916697.


microRNA-based diagnostic and therapeutic applications in cancer medicine.

Sempere L, Azmi A, Moore A Wiley Interdiscip Rev RNA. 2021; 12(6):e1662.

PMID: 33998154 PMC: 8519065. DOI: 10.1002/wrna.1662.


The miR-19b-3p-MAP2K3-STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell carcinoma.

Zhang Y, Lu W, Chen Y, Lin Y, Yang X, Wang H Mol Oncol. 2021; 15(5):1566-1583.

PMID: 33660414 PMC: 8096789. DOI: 10.1002/1878-0261.12934.


The Emerging Role of miRNAs for the Radiation Treatment of Pancreatic Cancer.

Nguyen L, Schilling D, Dobiasch S, Raulefs S, Santiago Franco M, Buschmann D Cancers (Basel). 2020; 12(12).

PMID: 33317198 PMC: 7763922. DOI: 10.3390/cancers12123703.


References
1.
Keyse S . Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev. 2008; 27(2):253-61. DOI: 10.1007/s10555-008-9123-1. View

2.
Rigg A, Lemoine N . Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther. 2002; 8(11):869-78. DOI: 10.1038/sj.cgt.7700387. View

3.
Jackson E, Willis N, Mercer K, Bronson R, Crowley D, Montoya R . Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001; 15(24):3243-8. PMC: 312845. DOI: 10.1101/gad.943001. View

4.
Vidigal J, Ventura A . The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol. 2014; 25(3):137-47. PMC: 4344861. DOI: 10.1016/j.tcb.2014.11.004. View

5.
ODonnell K, Wentzel E, Zeller K, Dang C, Mendell J . c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005; 435(7043):839-43. DOI: 10.1038/nature03677. View