» Articles » PMID: 28396013

Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK

Overview
Journal EBioMedicine
Date 2017 Apr 12
PMID 28396013
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The specific Sirt1 activator SRT1720 increases mitochondrial function in skeletal muscle, presumably by activating Sirt1. However, Sirt1 gain of function does not increase mitochondrial function, which raises a question about the central role of Sirt1 in SRT1720 action. Moreover, it is believed that the metabolic effects of SRT1720 occur independently of AMP-activated protein kinase (AMPK), an important metabolic regulator that increases mitochondrial function. Here, we show that SRT1720 activates AMPK in a Sirt1-independent manner and SRT1720 activates AMPK by inhibiting a cAMP degrading phosphodiesterase (PDE) in a competitive manner. Inhibiting the cAMP effector protein Epac prevents SRT1720 from activating AMPK or Sirt1 in myotubes. Moreover, SRT1720 does not increase mitochondrial function or improve glucose tolerance in AMPKα2 knockout mice. Interestingly, weight loss induced by SRT1720 is not sufficient to improve glucose tolerance. Therefore, contrary to current belief, the metabolic effects produced by SRT1720 require AMPK, which can be activated independently of Sirt1.

Citing Articles

Preventing loss of sirt1 lowers mitochondrial oxidative stress and preserves C2C12 myotube diameter in an in vitro model of cancer cachexia.

Hain B, Kimball S, Waning D Physiol Rep. 2024; 12(13):e16103.

PMID: 38946587 PMC: 11215470. DOI: 10.14814/phy2.16103.


Exploring histone deacetylases in type 2 diabetes mellitus: pathophysiological insights and therapeutic avenues.

Kumar K, Aburawi E, Ljubisavljevic M, Leow M, Feng X, Ansari S Clin Epigenetics. 2024; 16(1):78.

PMID: 38862980 PMC: 11167878. DOI: 10.1186/s13148-024-01692-0.


Current Trends in Sirtuin Activator and Inhibitor Development.

Bursch K, Goetz C, Smith B Molecules. 2024; 29(5).

PMID: 38474697 PMC: 10934002. DOI: 10.3390/molecules29051185.


SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism.

Varghese B, Chianese U, Capasso L, Sian V, Bontempo P, Conte M J Transl Med. 2023; 21(1):627.

PMID: 37715252 PMC: 10504761. DOI: 10.1186/s12967-023-04440-9.


Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy.

Zheng Y, Wang S, Wu J, Wang Y J Transl Med. 2023; 21(1):510.

PMID: 37507803 PMC: 10375703. DOI: 10.1186/s12967-023-04367-1.


References
1.
Howitz K, Bitterman K, Cohen H, Lamming D, Lavu S, Wood J . Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003; 425(6954):191-6. DOI: 10.1038/nature01960. View

2.
Oestreich E, Malik S, Goonasekera S, Blaxall B, Kelley G, Dirksen R . Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem. 2008; 284(3):1514-22. PMC: 2615515. DOI: 10.1074/jbc.M806994200. View

3.
Burgin A, Magnusson O, Singh J, Witte P, Staker B, Bjornsson J . Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat Biotechnol. 2009; 28(1):63-70. DOI: 10.1038/nbt.1598. View

4.
Borra M, Smith B, Denu J . Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005; 280(17):17187-95. DOI: 10.1074/jbc.M501250200. View

5.
Hubbard B, Gomes A, Dai H, Li J, Case A, Considine T . Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science. 2013; 339(6124):1216-9. PMC: 3799917. DOI: 10.1126/science.1231097. View