» Articles » PMID: 28377584

Rotiferan Hox Genes Give New Insights into the Evolution of Metazoan Bodyplans

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Apr 6
PMID 28377584
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The phylum Rotifera consists of minuscule, nonsegmented animals with a unique body plan and an unresolved phylogenetic position. The presence of pharyngeal articulated jaws supports an inclusion in Gnathifera nested in the Spiralia. Comparison of Hox genes, involved in animal body plan patterning, can be used to infer phylogenetic relationships. Here, we report the expression of five Hox genes during embryogenesis of the rotifer Brachionus manjavacas and show how these genes define different functional components of the nervous system and not the usual bilaterian staggered expression along the anteroposterior axis. Sequence analysis revealed that the lox5-parapeptide, a key signature in lophotrochozoan and platyhelminthean Hox6/lox5 genes, is absent and replaced by different signatures in Rotifera and Chaetognatha, and that the MedPost gene, until now unique to Chaetognatha, is also present in rotifers. Collectively, our results support an inclusion of chaetognaths in gnathiferans and Gnathifera as sister group to the remaining spiralians.Rotifers are microscopic animals with an unusual, nonsegmented body plan consisting of a head, trunk and foot. Here, Fröbius and Funch investigate the role of Hox genes-which are widely used in animal body plan patterning-in rotifer embryogenesis and find non-canonical expression in the nervous system.

Citing Articles

Comparative Hox genes expression within the dimorphic annelid Streblospio benedicti reveals patterning variation during development.

Aguilar-Camacho J, Harry N, Zakas C Evodevo. 2024; 15(1):12.

PMID: 39334480 PMC: 11438215. DOI: 10.1186/s13227-024-00231-5.


A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they "animal seeds"?.

Hashimshony T, Levin L, Frobius A, Dahan N, Chalifa-Caspi V, Hamo R BMC Genomics. 2024; 25(1):119.

PMID: 38281016 PMC: 10821554. DOI: 10.1186/s12864-024-09961-1.


A giant stem-group chaetognath.

Park T, Nielsen M, Parry L, Sorensen M, Lee M, Kihm J Sci Adv. 2024; 10(1):eadi6678.

PMID: 38170772 PMC: 10796117. DOI: 10.1126/sciadv.adi6678.


Genomic and transcriptomic survey of bryozoan Hox and ParaHox genes with emphasis on phylactolaemate bryozoans.

Saadi A, de Oliveira A, Kocot K, Schwaha T BMC Genomics. 2023; 24(1):711.

PMID: 38001438 PMC: 10675955. DOI: 10.1186/s12864-023-09826-z.


Highly efficient CRISPR-mediated gene editing in a rotifer.

Feng H, Bavister G, Gribble K, Mark Welch D PLoS Biol. 2023; 21(7):e3001888.

PMID: 37478130 PMC: 10395877. DOI: 10.1371/journal.pbio.3001888.


References
1.
Sorensen M . Further structures in the jaw apparatus of Limnognathia maerski (Micrognathozoa), with notes on the phylogeny of the Gnathifera. J Morphol. 2002; 255(2):131-45. DOI: 10.1002/jmor.10038. View

2.
Burke A, Nelson C, Morgan B, Tabin C . Hox genes and the evolution of vertebrate axial morphology. Development. 1995; 121(2):333-46. DOI: 10.1242/dev.121.2.333. View

3.
Cavalier-Smith T . A revised six-kingdom system of life. Biol Rev Camb Philos Soc. 1998; 73(3):203-66. DOI: 10.1017/s0006323198005167. View

4.
Shimotori T, Goto T . Developmental fates of the first four blastomeres of the chaetognath Paraspadella gotoi: relationship to protostomes. Dev Growth Differ. 2001; 43(4):371-82. DOI: 10.1046/j.1440-169x.2001.00583.x. View

5.
Ferrier D, Minguillon C, Holland P, Garcia-Fernandez J . The amphioxus Hox cluster: deuterostome posterior flexibility and Hox14. Evol Dev. 2001; 2(5):284-93. DOI: 10.1046/j.1525-142x.2000.00070.x. View