» Articles » PMID: 28319081

Guide-independent DNA Cleavage by Archaeal Argonaute from Methanocaldococcus Jannaschii

Abstract

Prokaryotic Argonaute proteins acquire guide strands derived from invading or mobile genetic elements, via an unknown pathway, to direct guide-dependent cleavage of foreign DNA. Here, we report that Argonaute from the archaeal organism Methanocaldococcus jannaschii (MjAgo) possesses two modes of action: the canonical guide-dependent endonuclease activity and a non-guided DNA endonuclease activity. The latter allows MjAgo to process long double-stranded DNAs, including circular plasmid DNAs and genomic DNAs. Degradation of substrates in a guide-independent fashion primes MjAgo for subsequent rounds of DNA cleavage. Chromatinized genomic DNA is resistant to MjAgo degradation, and recombinant histones protect DNA from cleavage in vitro. Mutational analysis shows that key residues important for guide-dependent target processing are also involved in guide-independent MjAgo function. This is the first characterization of guide-independent cleavage activity for an Argonaute protein potentially serving as a guide biogenesis pathway in a prokaryotic system.

Citing Articles

Structural basis of ssDNA-guided NADase activation of prokaryotic SPARTA system.

Hu R, Guo C, Liu X, Lin Y, Yang Z, Li Z Nucleic Acids Res. 2025; 53(4).

PMID: 39997222 PMC: 11851103. DOI: 10.1093/nar/gkaf110.


Structural and mechanistic insights into the activation of a short prokaryotic argonaute system from archaeon Sulfolobus islandicus.

Dai Z, Chen Y, Guan Z, Chen X, Tan K, Yang K Nucleic Acids Res. 2025; 53(3).

PMID: 39898546 PMC: 11788926. DOI: 10.1093/nar/gkaf059.


Multiplexed food-borne pathogen detection using an argonaute-mediated digital sensor based on a magnetic-bead-assisted imaging transcoding system.

Wang Z, Cheng X, Ma A, Jiang F, Chen Y Nat Food. 2025; 6(2):170-181.

PMID: 39748032 DOI: 10.1038/s43016-024-01082-y.


The role of prokaryotic argonautes in resistance to type II topoisomerases poison ciprofloxacin.

Galivondzhyan A, Sutormin D, Panteleev V, Kulbachinskiy A, Severinov K Biochem Soc Trans. 2024; 52(5):2157-2166.

PMID: 39446311 PMC: 11555693. DOI: 10.1042/BST20240094.


Catalytically active prokaryotic Argonautes employ phospholipase D family proteins to strengthen immunity against different genetic invaders.

Cheng F, Wu A, Li Z, Xu J, Cao X, Yu H mLife. 2024; 3(3):403-416.

PMID: 39359674 PMC: 11442185. DOI: 10.1002/mlf2.12138.


References
1.
Chandradoss S, Schirle N, Szczepaniak M, MacRae I, Joo C . A Dynamic Search Process Underlies MicroRNA Targeting. Cell. 2015; 162(1):96-107. PMC: 4768356. DOI: 10.1016/j.cell.2015.06.032. View

2.
Willkomm S, Zander A, Grohmann D, Restle T . Mechanistic Insights into Archaeal and Human Argonaute Substrate Binding and Cleavage Properties. PLoS One. 2016; 11(10):e0164695. PMC: 5065165. DOI: 10.1371/journal.pone.0164695. View

3.
Wagner M, Berkner S, Ajon M, Driessen A, Lipps G, Albers S . Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans. 2009; 37(Pt 1):97-101. DOI: 10.1042/BST0370097. View

4.
Nakanishi K, Weinberg D, Bartel D, Patel D . Structure of yeast Argonaute with guide RNA. Nature. 2012; 486(7403):368-74. PMC: 3853139. DOI: 10.1038/nature11211. View

5.
Willkomm S, Oellig C, Zander A, Restle T, Keegan R, Grohmann D . Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein. Nat Microbiol. 2017; 2:17035. DOI: 10.1038/nmicrobiol.2017.35. View