» Articles » PMID: 28289731

Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns

Overview
Journal mSystems
Specialty Microbiology
Date 2017 Mar 15
PMID 28289731
Citations 835
Authors
Affiliations
Soon will be listed here.
Abstract

High-throughput sequencing of 16S ribosomal RNA gene amplicons has facilitated understanding of complex microbial communities, but the inherent noise in PCR and DNA sequencing limits differentiation of closely related bacteria. Although many scientific questions can be addressed with broad taxonomic profiles, clinical, food safety, and some ecological applications require higher specificity. Here we introduce a novel sub-operational-taxonomic-unit (sOTU) approach, Deblur, that uses error profiles to obtain putative error-free sequences from Illumina MiSeq and HiSeq sequencing platforms. Deblur substantially reduces computational demands relative to similar sOTU methods and does so with similar or better sensitivity and specificity. Using simulations, mock mixtures, and real data sets, we detected closely related bacterial sequences with single nucleotide differences while removing false positives and maintaining stability in detection, suggesting that Deblur is limited only by read length and diversity within the amplicon sequences. Because Deblur operates on a per-sample level, it scales to modern data sets and meta-analyses. To highlight Deblur's ability to integrate data sets, we include an interactive exploration of its application to multiple distinct sequencing rounds of the American Gut Project. Deblur is open source under the Berkeley Software Distribution (BSD) license, easily installable, and downloadable from https://github.com/biocore/deblur. Deblur provides a rapid and sensitive means to assess ecological patterns driven by differentiation of closely related taxa. This algorithm provides a solution to the problem of identifying real ecological differences between taxa whose amplicons differ by a single base pair, is applicable in an automated fashion to large-scale sequencing data sets, and can integrate sequencing runs collected over time.

Citing Articles

Using gut microbiome metagenomic hypervariable features for diabetes screening and typing through supervised machine learning.

Chavarria X, Park H, Oh S, Kang D, Choi J, Kim M Microb Genom. 2025; 11(3).

PMID: 40063675 PMC: 11893737. DOI: 10.1099/mgen.0.001365.


Mulberry leaves supplementation modulates ruminal and fecal bacterial community and metabolites in growing mutton sheep.

Cui X, Yang Y, Zhang M, Bao L, Jiao F, Wei X Sci Rep. 2025; 15(1):7923.

PMID: 40050295 PMC: 11885437. DOI: 10.1038/s41598-025-87298-9.


Microbial succession at weaning is guided by microbial metabolism of host glycans.

Lubin J, Planet P, Silverman M bioRxiv. 2025; .

PMID: 40027830 PMC: 11870605. DOI: 10.1101/2025.02.20.639370.


Gut microbiota and derived metabolites mediate obstructive sleep apnea induced atherosclerosis.

Xue J, Allaband C, Zuffa S, Poulsen O, Meadows J, Zhou D Gut Microbes. 2025; 17(1):2474142.

PMID: 40025767 PMC: 11881840. DOI: 10.1080/19490976.2025.2474142.


Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model.

Koslovsky M BMC Bioinformatics. 2025; 26(1):69.

PMID: 40016656 PMC: 11869466. DOI: 10.1186/s12859-025-06078-4.


References
1.
Bokulich N, Rideout J, Mercurio W, Shiffer A, Wolfe B, Maurice C . mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking. mSystems. 2016; 1(5). PMC: 5080401. DOI: 10.1128/mSystems.00062-16. View

2.
Quince C, Lanzen A, Davenport R, Turnbaugh P . Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 2011; 12:38. PMC: 3045300. DOI: 10.1186/1471-2105-12-38. View

3.
Callahan B, McMurdie P, Rosen M, Han A, Johnson A, Holmes S . DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581-3. PMC: 4927377. DOI: 10.1038/nmeth.3869. View

4.
Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R . EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience. 2013; 2(1):16. PMC: 4076506. DOI: 10.1186/2047-217X-2-16. View

5.
Amato K, Martinez-Mota R, Righini N, Raguet-Schofield M, Corcione F, Marini E . Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia. 2015; 180(3):717-33. DOI: 10.1007/s00442-015-3507-z. View