» Articles » PMID: 28239424

Non-covalent Interactions in Controlling PH-responsive Behaviors of Self-assembled Nanosystems

Overview
Journal Polym Chem
Date 2017 Feb 28
PMID 28239424
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Self-assembly and associated dynamic and reversible non-covalent interactions are the basis of protein biochemistry (e.g., protein folding) and development of sophisticated nanomaterial systems that can respond to and amplify biological signals. In this study, we report a systematic investigation of non-covalent interactions that affect the pH responsive behaviors and resulting supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Increase of hydrophobic and π-π stacking interactions led to the decrease of pKa values. In contrast, enhancement of direct ionic binding between cationic ammonium groups and anionic counter ions gave rise to increased pKa. Moreover, hydration of hydrophobic surfaces and hydrogen bonding interactions may also play a role in the self-assembly process. The key parameters capable of controlling the subtle interplay of different non-covalent bonds in pH-triggered self-assembly of UPS copolymers are likely to offer molecular insights to understand other stimuli-responsive nanosystems. Selective and precise implementation of non-covalent interactions in stimuli-responsive self-assembly processes will provide powerful and versatile tools for the development of dynamic, complex nanostructures with predictable and tunable transitions.

Citing Articles

Elucidation of Protonation Cooperativity of a STING-Activating Polymer.

Wang M, Bennett Z, Singh P, Feng Q, Wilhelm J, Huang G Adv Mater. 2023; 35(51):e2305255.

PMID: 37541432 PMC: 10838353. DOI: 10.1002/adma.202305255.


Charge Regulation of Poly(acrylic acid) in Solutions of Non-Charged Polymer and Colloids.

Yekymov E, Attia D, Levi-Kalisman Y, Bitton R, Yerushalmi-Rozen R Polymers (Basel). 2023; 15(5).

PMID: 36904365 PMC: 10007678. DOI: 10.3390/polym15051121.


Cooperative transitions involving hydrophobic polyelectrolytes.

Martin Robinson J, Kegel W Proc Natl Acad Sci U S A. 2023; 120(6):e2211088120.

PMID: 36716362 PMC: 9963826. DOI: 10.1073/pnas.2211088120.


Effects of Non-Ionic Micelles on the Acid-Base Equilibria of a Weak Polyelectrolyte.

Yekymov E, Attia D, Levi-Kalisman Y, Bitton R, Yerushalmi-Rozen R Polymers (Basel). 2022; 14(9).

PMID: 35567095 PMC: 9100363. DOI: 10.3390/polym14091926.


Phase Separation of Aqueous Poly(diisopropylaminoethyl methacrylate) upon Heating.

Salminen L, Karjalainen E, Aseyev V, Tenhu H Langmuir. 2021; 38(17):5135-5148.

PMID: 34752116 PMC: 9069861. DOI: 10.1021/acs.langmuir.1c02224.


References
1.
Li Y, Wang Y, Huang G, Ma X, Zhou K, Gao J . Chaotropic-anion-induced supramolecular self-assembly of ionic polymeric micelles. Angew Chem Int Ed Engl. 2014; 53(31):8074-8. PMC: 4126404. DOI: 10.1002/anie.201402525. View

2.
Whitesides G, Grzybowski B . Self-assembly at all scales. Science. 2002; 295(5564):2418-21. DOI: 10.1126/science.1070821. View

3.
Kokufuta E, Terada T, Tamura M, Suzuki S, Harada K . Potentiometric titration behavior of polylysine and copolymer of lysine with alanine prepared by thermal polycondensation. Arch Biochem Biophys. 1979; 196(1):23-32. DOI: 10.1016/0003-9861(79)90547-2. View

4.
Zhuang J, Gordon M, Ventura J, Li L, Thayumanavan S . Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev. 2013; 42(17):7421-35. PMC: 3740153. DOI: 10.1039/c3cs60094g. View

5.
Elsabahy M, Heo G, Lim S, Sun G, Wooley K . Polymeric Nanostructures for Imaging and Therapy. Chem Rev. 2015; 115(19):10967-1011. PMC: 4610256. DOI: 10.1021/acs.chemrev.5b00135. View