» Articles » PMID: 28232510

Regulation of Na Channel Inactivation by the DIII and DIV Voltage-sensing Domains

Overview
Journal J Gen Physiol
Specialty Physiology
Date 2017 Feb 25
PMID 28232510
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Functional eukaryotic voltage-gated Na (Na) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical Na channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair Na channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery.

Citing Articles

A sodium channel mutant removes fast inactivation with the inactivation particle bound.

Liu Y, Bezanilla F J Gen Physiol. 2024; 157(1).

PMID: 39601860 PMC: 11602646. DOI: 10.1085/jgp.202413667.


Honeybee CaV4 has distinct permeation, inactivation, and pharmacology from homologous NaV channels.

Bertaud A, Cens T, Chavanieu A, Estaran S, Rousset M, Soussi L J Gen Physiol. 2024; 156(5).

PMID: 38557788 PMC: 10983803. DOI: 10.1085/jgp.202313509.


Differential regulation of cardiac sodium channels by intracellular fibroblast growth factors.

Angsutararux P, Dutta A, Marras M, Abella C, Mellor R, Shi J J Gen Physiol. 2023; 155(5).

PMID: 36944081 PMC: 10038838. DOI: 10.1085/jgp.202213300.


Molecular Modeling of Cardiac Sodium Channel with Mexiletine.

Zhorov B Membranes (Basel). 2022; 12(12).

PMID: 36557159 PMC: 9786191. DOI: 10.3390/membranes12121252.


Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific.

Brake N, Mancino A, Yan Y, Shimomura T, Kubo Y, Khadra A J Gen Physiol. 2022; 154(7).

PMID: 35612552 PMC: 9136305. DOI: 10.1085/jgp.202112921.


References
1.
McPhee J, Ragsdale D, Scheuer T, Catterall W . A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. J Biol Chem. 1995; 270(20):12025-34. DOI: 10.1074/jbc.270.20.12025. View

2.
Dumaine R, Wang Q, Keating M, HARTMANN H, Schwartz P, Brown A . Multiple mechanisms of Na+ channel--linked long-QT syndrome. Circ Res. 1996; 78(5):916-24. DOI: 10.1161/01.res.78.5.916. View

3.
Varga Z, Zhu W, Schubert A, Pardieck J, Krumholz A, Hsu E . Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations. Circ Arrhythm Electrophysiol. 2015; 8(5):1228-39. PMC: 4618166. DOI: 10.1161/CIRCEP.115.003155. View

4.
HARTMANN H, Tiedeman A, Chen S, Brown A, Kirsch G . Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res. 1994; 75(1):114-22. DOI: 10.1161/01.res.75.1.114. View

5.
Arcisio-Miranda M, Muroi Y, Chowdhury S, Chanda B . Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics. J Gen Physiol. 2010; 136(5):541-54. PMC: 2964522. DOI: 10.1085/jgp.201010438. View