» Articles » PMID: 28209403

Small Molecules That Sabotage Bacterial Virulence

Overview
Specialty Pharmacology
Date 2017 Feb 18
PMID 28209403
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.

Citing Articles

An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics.

Dai C, Liu Y, Lv F, Cheng P, Qu S Adv Biotechnol (Singap). 2025; 3(1):6.

PMID: 39918653 PMC: 11805748. DOI: 10.1007/s44307-025-00059-7.


Evaluation of expanded 2-aminobenzothiazole library as inhibitors of a model histidine kinase and virulence suppressors in Pseudomonas aeruginosa.

Fihn C, Lembke H, Gaulin J, Bouchard P, Villarreal A, Penningroth M Bioorg Chem. 2024; 153:107840.

PMID: 39362083 PMC: 11614690. DOI: 10.1016/j.bioorg.2024.107840.


Ubiquitous purine sensor modulates diverse signal transduction pathways in bacteria.

Monteagudo-Cascales E, Gumerov V, Fernandez M, Matilla M, Gavira J, Zhulin I Nat Commun. 2024; 15(1):5867.

PMID: 38997289 PMC: 11245519. DOI: 10.1038/s41467-024-50275-3.


Evaluation of Expanded 2-Aminobenzothiazole Library for Inhibition of Virulence Phenotypes.

Fihn C, Lembke H, Gaulin J, Bouchard P, Villarreal A, Penningroth M bioRxiv. 2023; .

PMID: 37205454 PMC: 10187220. DOI: 10.1101/2023.05.02.539119.


Pseudomonas virulence factor controls expression of virulence genes in Pseudomonas entomophila.

Acken K, Li B PLoS One. 2023; 18(5):e0284907.

PMID: 37200397 PMC: 10194917. DOI: 10.1371/journal.pone.0284907.


References
1.
Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Innocenti A, Supuran C . Carbonic anhydrase inhibitors. Cloning, characterization, and inhibition studies of a new beta-carbonic anhydrase from Mycobacterium tuberculosis. J Med Chem. 2009; 52(9):3116-20. DOI: 10.1021/jm9003126. View

2.
Cegelski L, Pinkner J, Hammer N, Cusumano C, Hung C, Chorell E . Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol. 2009; 5(12):913-9. PMC: 2838449. DOI: 10.1038/nchembio.242. View

3.
Shamir E, Warthan M, Brown S, Nataro J, Guerrant R, Hoffman P . Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob Agents Chemother. 2010; 54(4):1526-33. PMC: 2849362. DOI: 10.1128/AAC.01279-09. View

4.
Deb C, Lee C, Dubey V, Daniel J, Abomoelak B, Sirakova T . A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One. 2009; 4(6):e6077. PMC: 2698117. DOI: 10.1371/journal.pone.0006077. View

5.
Gould T, van de Langemheen H, Munoz-Elias E, McKinney J, Sacchettini J . Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol. 2006; 61(4):940-7. DOI: 10.1111/j.1365-2958.2006.05297.x. View