» Articles » PMID: 28198384

Hyperspectral Infrared Nanoimaging of Organic Samples Based on Fourier Transform Infrared Nanospectroscopy

Overview
Journal Nat Commun
Specialty Biology
Date 2017 Feb 16
PMID 28198384
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

Citing Articles

Nanoscale ultrafast dynamics in BiTe thin film by terahertz scanning near-field nanoscopy.

Huang Z, Li J, Li P, Du L, Dai M, Cai J iScience. 2025; 28(2):111840.

PMID: 39981518 PMC: 11841264. DOI: 10.1016/j.isci.2025.111840.


High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics.

Mester L, Govyadinov A, Hillenbrand R Nanophotonics. 2024; 11(2):377-390.

PMID: 39633877 PMC: 11501567. DOI: 10.1515/nanoph-2021-0565.


A novel tape-free sample preparation method for human osteochondral cryosections for high throughput hyperspectral imaging.

Fan X, Donose B, Jones M, Howard D, Torniainen J, Bertling K Histochem Cell Biol. 2024; 163(1):16.

PMID: 39621099 DOI: 10.1007/s00418-024-02338-1.


Rational partitioning of spectral feature space for effective clustering of massive spectral image data.

Ito Y, Takeichi Y, Hino H, Ono K Sci Rep. 2024; 14(1):22549.

PMID: 39343823 PMC: 11439947. DOI: 10.1038/s41598-024-74016-0.


Applying the Atomic Force Microscopy Technique in Medical Sciences-A Narrative Review.

Krawczyk-Woloszyn K, Roczkowski D, Reich A, Zychowska M Biomedicines. 2024; 12(9).

PMID: 39335524 PMC: 11429229. DOI: 10.3390/biomedicines12092012.


References
1.
Kehr S, Cebula M, Mieth O, Hartling T, Seidel J, Grafstrom S . Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys Rev Lett. 2008; 100(25):256403. DOI: 10.1103/PhysRevLett.100.256403. View

2.
STURGEON R . A re-investigation of the borohydride reduction of carbohydrates. Carbohydr Res. 1992; 227:375-7. DOI: 10.1016/0008-6215(92)85087-g. View

3.
Marcott C, Lo M, Kjoller K, Fiat F, Baghdadli N, Balooch G . Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging. Appl Spectrosc. 2014; 68(5):564-9. DOI: 10.1366/13-07328. View

4.
Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng C . Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol. 2004; 81(1):135-44. DOI: 10.1562/2004-08-03-RA-259.1. View

5.
Xu X, Rang M, Craig I, Raschke M . Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity. J Phys Chem Lett. 2015; 3(13):1836-41. DOI: 10.1021/jz300463d. View