» Articles » PMID: 38177954

A Machine Learning Route Between Band Mapping and Band Structure

Overview
Journal Nat Comput Sci
Publisher Springer Nature
Specialties Biology
Science
Date 2024 Jan 4
PMID 38177954
Authors
Affiliations
Soon will be listed here.
Abstract

The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.

Citing Articles

When Machine Learning Meets 2D Materials: A Review.

Lu B, Xia Y, Ren Y, Xie M, Zhou L, Vinai G Adv Sci (Weinh). 2024; 11(13):e2305277.

PMID: 38279508 PMC: 10987159. DOI: 10.1002/advs.202305277.


Observation of ultrafast interfacial Meitner-Auger energy transfer in a Van der Waals heterostructure.

Dong S, Beaulieu S, Selig M, Rosenzweig P, Christiansen D, Pincelli T Nat Commun. 2023; 14(1):5057.

PMID: 37598179 PMC: 10439896. DOI: 10.1038/s41467-023-40815-8.

References
1.
Peng H, Gao X, He Y, Li Y, Ji Y, Liu C . Super resolution convolutional neural network for feature extraction in spectroscopic data. Rev Sci Instrum. 2020; 91(3):033905. DOI: 10.1063/1.5132586. View

2.
Himanen L, Geurts A, Foster A, Rinke P . Data-Driven Materials Science: Status, Challenges, and Perspectives. Adv Sci (Weinh). 2019; 6(21):1900808. PMC: 6839624. DOI: 10.1002/advs.201900808. View

3.
Perdew J, Ruzsinszky A, Csonka G, Vydrov O, Scuseria G, Constantin L . Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett. 2008; 100(13):136406. DOI: 10.1103/PhysRevLett.100.136406. View

4.
VALLA , Fedorov , Johnson , Wells , Hulbert , Li . Evidence for quantum critical behavior in the optimally doped cuprate Bi(2)Sr(2)CaCu(2)O(8+delta) . Science. 1999; 285(5436):2110-3. DOI: 10.1126/science.285.5436.2110. View

5.
Bahramy M, Clark O, Yang B, Feng J, Bawden L, Riley J . Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides. Nat Mater. 2017; 17(1):21-28. DOI: 10.1038/nmat5031. View