» Articles » PMID: 28191888

Promoter Shape Varies Across Populations and Affects Promoter Evolution and Expression Noise

Overview
Journal Nat Genet
Specialty Genetics
Date 2017 Feb 14
PMID 28191888
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Animal promoters initiate transcription either at precise positions (narrow promoters) or dispersed regions (broad promoters), a distinction referred to as promoter shape. Although highly conserved, the functional properties of promoters with different shapes and the genetic basis of their evolution remain unclear. Here we used natural genetic variation across a panel of 81 Drosophila lines to measure changes in transcriptional start site (TSS) usage, identifying thousands of genetic variants affecting transcript levels (strength) or the distribution of TSSs within a promoter (shape). Our results identify promoter shape as a molecular trait that can evolve independently of promoter strength. Broad promoters typically harbor shape-associated variants, with signatures of adaptive selection. Single-cell measurements demonstrate that variants modulating promoter shape often increase expression noise, whereas heteroallelic interactions with other promoter variants alleviate these effects. These results uncover new functional properties of natural promoters and suggest the minimization of expression noise as an important factor in promoter evolution.

Citing Articles

A compendium of genetic variations associated with promoter usage across 49 human tissues.

Yuan J, Tong Y, Wang L, Yang X, Liu X, Shu M Nat Commun. 2024; 15(1):8758.

PMID: 39384785 PMC: 11464533. DOI: 10.1038/s41467-024-53131-6.


Evidence for compensatory evolution within pleiotropic regulatory elements.

Kliesmete Z, Orchard P, Lee V, Geuder J, Krauss S, Ohnuki M Genome Res. 2024; 34(10):1528-1539.

PMID: 39255977 PMC: 11534155. DOI: 10.1101/gr.279001.124.


Identifying promoter sequence architectures via a chunking-based algorithm using non-negative matrix factorisation.

Nikumbh S, Lenhard B PLoS Comput Biol. 2023; 19(11):e1011491.

PMID: 37983292 PMC: 10695386. DOI: 10.1371/journal.pcbi.1011491.


eRNA co-expression network uncovers TF dependency and convergent cooperativity.

Lee S, Kristjansdottir K, Kwak H Sci Rep. 2023; 13(1):19085.

PMID: 37925545 PMC: 10625640. DOI: 10.1038/s41598-023-46415-2.


Plant Promoters and Terminators for High-Precision Bioengineering.

Brooks E, Elorriaga E, Liu Y, Duduit J, Yuan G, Tsai C Biodes Res. 2023; 5:0013.

PMID: 37849460 PMC: 10328392. DOI: 10.34133/bdr.0013.


References
1.
Merli C, Bergstrom D, Cygan J, Blackman R . Promoter specificity mediates the independent regulation of neighboring genes. Genes Dev. 1996; 10(10):1260-70. DOI: 10.1101/gad.10.10.1260. View

2.
Arbiza L, Gronau I, Aksoy B, Hubisz M, Gulko B, Keinan A . Genome-wide inference of natural selection on human transcription factor binding sites. Nat Genet. 2013; 45(7):723-9. PMC: 3932982. DOI: 10.1038/ng.2658. View

3.
Akalin A, Fredman D, Arner E, Dong X, Bryne J, Suzuki H . Transcriptional features of genomic regulatory blocks. Genome Biol. 2009; 10(4):R38. PMC: 2688929. DOI: 10.1186/gb-2009-10-4-r38. View

4.
Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume D . Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 2007; 8(6):424-36. DOI: 10.1038/nrg2026. View

5.
Mackay T, Richards S, Stone E, Barbadilla A, Ayroles J, Zhu D . The Drosophila melanogaster Genetic Reference Panel. Nature. 2012; 482(7384):173-8. PMC: 3683990. DOI: 10.1038/nature10811. View