» Articles » PMID: 28168671

An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project

Abstract

The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way. The development of predictive nanotoxicology models requires the use of high quality experimental data on the structure, physicochemical properties and bioactivity of nanomaterials. The FP7 Project MODERN has developed and evaluated the main components of a computational framework for the evaluation of the environmental and health impacts of nanoparticles. This chapter describes each of the elements of the framework including aspects related to data generation, management and integration; development of nanodescriptors; establishment of nanostructure-activity relationships; identification of nanoparticle categories; hazard ranking and risk assessment.

Citing Articles

Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives.

Konstantopoulos G, Koumoulos E, Charitidis C Nanomaterials (Basel). 2022; 12(15).

PMID: 35957077 PMC: 9370746. DOI: 10.3390/nano12152646.


Toxicogenomic Profiling of 28 Nanomaterials in Mouse Airways.

Kinaret P, Ndika J, Ilves M, Wolff H, Vales G, Norppa H Adv Sci (Weinh). 2021; 8(10):2004588.

PMID: 34026454 PMC: 8132046. DOI: 10.1002/advs.202004588.

References
1.
Arts J, Hadi M, Irfan M, Keene A, Kreiling R, Lyon D . A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol. 2015; 71(2 Suppl):S1-27. DOI: 10.1016/j.yrtph.2015.03.007. View

2.
Aruoja V, Dubourguier H, Kasemets K, Kahru A . Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2008; 407(4):1461-8. DOI: 10.1016/j.scitotenv.2008.10.053. View

3.
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A . Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013; 87(7):1181-200. PMC: 3677982. DOI: 10.1007/s00204-013-1079-4. View

4.
Chattaraj P, Giri S, Duley S . Update 2 of: electrophilicity index. Chem Rev. 2011; 111(2):PR43-75. DOI: 10.1021/cr100149p. View

5.
Choi O, Hu Z . Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008; 42(12):4583-8. DOI: 10.1021/es703238h. View