» Articles » PMID: 28138514

The Thermodynamic Scale of Inorganic Crystalline Metastability

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2017 Feb 1
PMID 28138514
Citations 91
Authors
Affiliations
Soon will be listed here.
Abstract

The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.

Citing Articles

A Cellular Automaton Simulation for Predicting Phase Evolution in Solid-State Reactions.

Gallant M, McDermott M, Li B, Persson K Chem Mater. 2025; 37(1):210-223.

PMID: 39830217 PMC: 11736680. DOI: 10.1021/acs.chemmater.4c02301.


Evaluating Material Design Principles for Calcium-Ion Mobility in Intercalation Cathodes.

Kim J, Sari D, Chen Q, Ceder G, Persson K Chem Mater. 2025; 37(1):507-519.

PMID: 39830216 PMC: 11736685. DOI: 10.1021/acs.chemmater.4c02927.


Stepwise Structural Relaxation in Battery Active Materials.

Skurtveit A, North E, Park H, Chernyshov D, Wragg D, Koposov A ACS Mater Lett. 2025; 7(1):343-349.

PMID: 39790737 PMC: 11707793. DOI: 10.1021/acsmaterialslett.4c02058.


Wide-ranging predictions of new stable compounds powered by recommendation engines.

Griesemer S, Baldassarri B, Zhu R, Shen J, Pal K, Park C Sci Adv. 2025; 11(1):eadq1431.

PMID: 39752492 PMC: 11698120. DOI: 10.1126/sciadv.adq1431.


Coherent-Precipitation-Stabilized Phase Formation in Over-Stoichiometric Rocksalt-Type Li Superionic Conductors.

Chen Y, Zhao X, Chen K, Koirala K, Giovine R, Yang X Adv Mater. 2024; 37(7):e2416342.

PMID: 39713900 PMC: 11837894. DOI: 10.1002/adma.202416342.


References
1.
Glas F, Harmand J, Patriarche G . Why does wurtzite form in nanowires of III-V zinc blende semiconductors?. Phys Rev Lett. 2007; 99(14):146101. DOI: 10.1103/PhysRevLett.99.146101. View

2.
Perdew , Burke , Ernzerhof . Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996; 77(18):3865-3868. DOI: 10.1103/PhysRevLett.77.3865. View

3.
Jansen M . A concept for synthesis planning in solid-state chemistry. Angew Chem Int Ed Engl. 2002; 41(20):3746-66. DOI: 10.1002/1521-3773(20021018)41:20<3746::AID-ANIE3746>3.0.CO;2-2. View

4.
Belsky A, Hellenbrandt M, Karen V, Luksch P . New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr B. 2002; 58(Pt 3 Pt 1):364-9. DOI: 10.1107/s0108768102006948. View

5.
Stein A, Keller S, Mallouk T . Turning down the heat: design and mechanism in solid-state synthesis. Science. 1993; 259(5101):1558-64. DOI: 10.1126/science.259.5101.1558. View