» Articles » PMID: 38172364

Disordered Enthalpy-entropy Descriptor for High-entropy Ceramics Discovery

Abstract

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions. Here we introduce disordered enthalpy-entropy descriptor (DEED), a descriptor that captures the balance between entropy gains and enthalpy costs, allowing the correct classification of functional synthesizability of multicomponent ceramics, regardless of chemistry and structure. To make our calculations possible, we have developed a convolutional algorithm that drastically reduces computational resources. Moreover, DEED guides the experimental discovery of new single-phase high-entropy carbonitrides and borides. This work, integrated into the AFLOW computational ecosystem, provides an array of potential new candidates, ripe for experimental discoveries.

Citing Articles

Predictive Modeling of High-Entropy Alloys and Amorphous Metallic Alloys Using Machine Learning.

Jung S, Jung G, Cole J J Chem Inf Model. 2024; 64(19):7313-7336.

PMID: 39351774 PMC: 11480990. DOI: 10.1021/acs.jcim.4c00873.


Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange.

Evans M, Bergsma J, Merkys A, Andersen C, Andersson O, Beltran D Digit Discov. 2024; 3(8):1509-1533.

PMID: 39118978 PMC: 11305395. DOI: 10.1039/d4dd00039k.


Clarifying the four core effects of high-entropy materials.

Hsu W, Tsai C, Yeh A, Yeh J Nat Rev Chem. 2024; 8(6):471-485.

PMID: 38698142 DOI: 10.1038/s41570-024-00602-5.


Materials design for hypersonics.

Peters A, Zhang D, Chen S, Ott C, Oses C, Curtarolo S Nat Commun. 2024; 15(1):3328.

PMID: 38637517 PMC: 11026513. DOI: 10.1038/s41467-024-46753-3.

References
1.
Sarker P, Harrington T, Toher C, Oses C, Samiee M, Maria J . High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018; 9(1):4980. PMC: 6255778. DOI: 10.1038/s41467-018-07160-7. View

2.
Calzolari A, Oses C, Toher C, Esters M, Campilongo X, Stepanoff S . Plasmonic high-entropy carbides. Nat Commun. 2022; 13(1):5993. PMC: 9553889. DOI: 10.1038/s41467-022-33497-1. View

3.
Sun W, Dacek S, Ong S, Hautier G, Jain A, Richards W . The thermodynamic scale of inorganic crystalline metastability. Sci Adv. 2017; 2(11):e1600225. PMC: 5262468. DOI: 10.1126/sciadv.1600225. View

4.
Aykol M, Dwaraknath S, Sun W, Persson K . Thermodynamic limit for synthesis of metastable inorganic materials. Sci Adv. 2018; 4(4):eaaq0148. PMC: 5930398. DOI: 10.1126/sciadv.aaq0148. View

5.
Singstock N, Ortiz-Rodriguez J, Perryman J, Sutton C, Velazquez J, Musgrave C . Machine Learning Guided Synthesis of Multinary Chevrel Phase Chalcogenides. J Am Chem Soc. 2021; 143(24):9113-9122. DOI: 10.1021/jacs.1c02971. View