6.
Bilc D, Hautier G, Waroquiers D, Rignanese G, Ghosez P
. Low-dimensional transport and large thermoelectric power factors in bulk semiconductors by band engineering of highly directional electronic states. Phys Rev Lett. 2015; 114(13):136601.
DOI: 10.1103/PhysRevLett.114.136601.
View
7.
Chueh W, Falter C, Abbott M, Scipio D, Furler P, Haile S
. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science. 2011; 330(6012):1797-801.
DOI: 10.1126/science.1197834.
View
8.
Xie T, Grossman J
. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys Rev Lett. 2018; 120(14):145301.
DOI: 10.1103/PhysRevLett.120.145301.
View
9.
Majumdar A
. Materials science. Thermoelectricity in semiconductor nanostructures. Science. 2004; 303(5659):777-8.
DOI: 10.1126/science.1093164.
View
10.
Griesemer S, Xia Y, Wolverton C
. Accelerating the prediction of stable materials with machine learning. Nat Comput Sci. 2024; 3(11):934-945.
DOI: 10.1038/s43588-023-00536-w.
View
11.
Kageyama H, Hayashi K, Maeda K, Paul Attfield J, Hiroi Z, Rondinelli J
. Expanding frontiers in materials chemistry and physics with multiple anions. Nat Commun. 2018; 9(1):772.
PMC: 5823932.
DOI: 10.1038/s41467-018-02838-4.
View
12.
Morrison G, Latshaw A, Spagnuolo N, Zur Loye H
. Observation of Intense X-ray Scintillation in a Family of Mixed Anion Silicates, CsRESiOF (RE = Y, Eu-Lu), Obtained via an Enhanced Flux Crystal Growth Technique. J Am Chem Soc. 2017; 139(41):14743-14748.
DOI: 10.1021/jacs.7b08559.
View
13.
Cui J, Li C, Zhang F
. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting. ChemSusChem. 2018; 12(9):1872-1888.
DOI: 10.1002/cssc.201801829.
View
14.
Cheetham A, Seshadri R
. Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for Materials Discovery. Chem Mater. 2024; 36(8):3490-3495.
PMC: 11044265.
DOI: 10.1021/acs.chemmater.4c00643.
View
15.
Schmidt J, Pettersson L, Verdozzi C, Botti S, Marques M
. Crystal graph attention networks for the prediction of stable materials. Sci Adv. 2021; 7(49):eabi7948.
PMC: 8641929.
DOI: 10.1126/sciadv.abi7948.
View
16.
Karim M, Ganose A, Pieters L, Leung W, Wade J, Zhang L
. Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide CsSnX Vacancy Ordered Double Perovskites. Chem Mater. 2020; 31(22):9430-9444.
PMC: 7046317.
DOI: 10.1021/acs.chemmater.9b03267.
View
17.
Andersen C, Armiento R, Blokhin E, Conduit G, Dwaraknath S, Evans M
. OPTIMADE, an API for exchanging materials data. Sci Data. 2021; 8(1):217.
PMC: 8361091.
DOI: 10.1038/s41597-021-00974-z.
View
18.
Jha D, Choudhary K, Tavazza F, Liao W, Choudhary A, Campbell C
. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning. Nat Commun. 2019; 10(1):5316.
PMC: 6874674.
DOI: 10.1038/s41467-019-13297-w.
View
19.
Faber F, Lindmaa A, Anatole von Lilienfeld O, Armiento R
. Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals. Phys Rev Lett. 2016; 117(13):135502.
DOI: 10.1103/PhysRevLett.117.135502.
View
20.
Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G
. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem. 2010; 50(2):656-63.
DOI: 10.1021/ic102031h.
View