» Articles » PMID: 28114311

RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

Overview
Journal PLoS One
Date 2017 Jan 24
PMID 28114311
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development.

Citing Articles

Arp2/3-dependent endocytosis ensures Cdc42 oscillations by removing Pak1-mediated negative feedback.

Harrell M, Liu Z, Campbell B, Chinsen O, Hong T, Das M J Cell Biol. 2024; 223(10.

PMID: 39012625 PMC: 11259211. DOI: 10.1083/jcb.202311139.


RhoGEF Tiam2 Regulates Glutamatergic Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons.

Rao S, Liang F, Herring B eNeuro. 2024; 11(7).

PMID: 38871458 PMC: 11262554. DOI: 10.1523/ENEURO.0500-21.2024.


The podocytes' inflammatory responses in experimental GN are independent of canonical MYD88-dependent toll-like receptor signaling.

Schomig T, Diefenhardt P, Plagmann I, Trinsch B, Merz T, Crispatzu G Sci Rep. 2024; 14(1):2292.

PMID: 38280906 PMC: 10821883. DOI: 10.1038/s41598-024-52565-8.


The Arp2/3 complex promotes periodic removal of Pak1-mediated negative feedback to facilitate anticorrelated Cdc42 oscillations.

Harrell M, Liu Z, Campbell B, Chinsen O, Hong T, Das M bioRxiv. 2023; .

PMID: 38106068 PMC: 10723479. DOI: 10.1101/2023.11.08.566261.


A Structural Network Analysis of Neuronal ArhGAP21/23 Interactors by Computational Modeling.

Kouchi Z, Kojima M ACS Omega. 2023; 8(22):19249-19264.

PMID: 37305272 PMC: 10249030. DOI: 10.1021/acsomega.2c08054.


References
1.
Hodges J, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz A . Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS One. 2011; 6(8):e24149. PMC: 3162601. DOI: 10.1371/journal.pone.0024149. View

2.
Labandeira-Garcia J, Rodriguez-Perez A, Villar-Cheda B, Borrajo A, Dominguez-Meijide A, Guerra M . Rho Kinase and Dopaminergic Degeneration: A Promising Therapeutic Target for Parkinson's Disease. Neuroscientist. 2014; 21(6):616-29. DOI: 10.1177/1073858414554954. View

3.
Katoh M, Katoh M . Identification and characterization of human ARHGAP23 gene in silico. Int J Oncol. 2004; 25(2):535-40. View

4.
Girirajan S, Rosenfeld J, Coe B, Parikh S, Friedman N, Goldstein A . Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N Engl J Med. 2012; 367(14):1321-31. PMC: 3494411. DOI: 10.1056/NEJMoa1200395. View

5.
Lionel A, Tammimies K, Vaags A, Rosenfeld J, Ahn J, Merico D . Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum Mol Genet. 2014; 23(10):2752-68. PMC: 3990173. DOI: 10.1093/hmg/ddt669. View