» Articles » PMID: 28077403

Gene Co-expression Analysis for Functional Classification and Gene-disease Predictions

Overview
Journal Brief Bioinform
Specialty Biology
Date 2017 Jan 13
PMID 28077403
Citations 495
Authors
Affiliations
Soon will be listed here.
Abstract

Gene co-expression networks can be used to associate genes of unknown function with biological processes, to prioritize candidate disease genes or to discern transcriptional regulatory programmes. With recent advances in transcriptomics and next-generation sequencing, co-expression networks constructed from RNA sequencing data also enable the inference of functions and disease associations for non-coding genes and splice variants. Although gene co-expression networks typically do not provide information about causality, emerging methods for differential co-expression analysis are enabling the identification of regulatory genes underlying various phenotypes. Here, we introduce and guide researchers through a (differential) co-expression analysis. We provide an overview of methods and tools used to create and analyse co-expression networks constructed from gene expression data, and we explain how these can be used to identify genes with a regulatory role in disease. Furthermore, we discuss the integration of other data types with co-expression networks and offer future perspectives of co-expression analysis.

Citing Articles

BRAF-PROTAC versus inhibitors in melanoma cells: Deep transcriptomic characterisation.

Alhassan S, Abd Elmageed Z, Errami Y, Wang G, Abi-Rached J, Kandil E Clin Transl Med. 2025; 15(3):e70251.

PMID: 40045459 PMC: 11882472. DOI: 10.1002/ctm2.70251.


Integrative systems biology framework discovers common gene regulatory signatures in mechanistically distinct inflammatory skin diseases.

Mishra B, Gou Y, Tan Z, Wang Y, Hu G, Athar M NPJ Syst Biol Appl. 2025; 11(1):21.

PMID: 40016271 PMC: 11868562. DOI: 10.1038/s41540-025-00498-x.


A neuro-immune axis of transcriptomic dysregulation within the subgenual anterior cingulate cortex in schizophrenia.

Smith R, Mihalik A, Akula N, Auluck P, Marenco S, Raznahan A bioRxiv. 2025; .

PMID: 39990369 PMC: 11844519. DOI: 10.1101/2025.02.14.638357.


Gene network analysis identifies dysregulated pathways in an autism spectrum disorder caused by mutations in Transcription Factor 4.

de Carvalho L, Carvalho V, Camargo A, Papes F Sci Rep. 2025; 15(1):4993.

PMID: 39929970 PMC: 11811132. DOI: 10.1038/s41598-025-89334-0.


Multi-Omics Analysis in Mouse Primary Cortical Neurons Reveals Complex Positive and Negative Biological Interactions Between Constituent Compounds of .

Chamberlin S, Zweig J, Neff C, Marney L, Choi J, Yang L Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861082 PMC: 11768890. DOI: 10.3390/ph18010019.


References
1.
Djordjevic D, Yang A, Zadoorian A, Rungrugeecharoen K, Ho J . How difficult is inference of mammalian causal gene regulatory networks?. PLoS One. 2014; 9(11):e111661. PMC: 4219746. DOI: 10.1371/journal.pone.0111661. View

2.
Gao Q, Ho C, Jia Y, Li J, Huang H . Biclustering of linear patterns in gene expression data. J Comput Biol. 2012; 19(6):619-31. PMC: 3375643. DOI: 10.1089/cmb.2012.0032. View

3.
Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H . Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun. 2014; 5:3231. PMC: 3951205. DOI: 10.1038/ncomms4231. View

4.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

5.
Segal E, Friedman N, Koller D, Regev A . A module map showing conditional activity of expression modules in cancer. Nat Genet. 2004; 36(10):1090-8. DOI: 10.1038/ng1434. View