» Articles » PMID: 24488081

Gene Co-expression Network Analysis Reveals Common System-level Properties of Prognostic Genes Across Cancer Types

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Feb 4
PMID 24488081
Citations 217
Authors
Affiliations
Soon will be listed here.
Abstract

Prognostic genes are key molecules informative for cancer prognosis and treatment. Previous studies have focused on the properties of individual prognostic genes, but have lacked a global view of their system-level properties. Here we examined their properties in gene co-expression networks for four cancer types using data from 'The Cancer Genome Atlas'. We found that prognostic mRNA genes tend not to be hub genes (genes with an extremely high connectivity), and this pattern is unique to the corresponding cancer-type-specific network. In contrast, the prognostic genes are enriched in modules (a group of highly interconnected genes), especially in module genes conserved across different cancer co-expression networks. The target genes of prognostic miRNA genes show similar patterns. We identified the modules enriched in various prognostic genes, some of which show cross-tumour conservation. Given the cancer types surveyed, our study presents a view of emergent properties of prognostic genes.

Citing Articles

Multi-tissue network analysis reveals the effect of JNK inhibition on dietary sucrose-induced metabolic dysfunction in rats.

Yang H, Zhang C, Kim W, Shi M, Kiliclioglu M, Bayram C Elife. 2025; 13.

PMID: 39932177 PMC: 11813226. DOI: 10.7554/eLife.98427.


A graph neural network approach for hierarchical mapping of breast cancer protein communities.

Zhang X, Liu Q BMC Bioinformatics. 2025; 26(1):23.

PMID: 39838298 PMC: 11749236. DOI: 10.1186/s12859-024-06015-x.


Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a non-human primate model of cytokine-Induced depression.

Bekhbat M, Block A, Dickinson S, Tharp G, Tharpd G, Bosinger S Brain Behav Immun. 2025; 125:308-318.

PMID: 39826580 PMC: 11903159. DOI: 10.1016/j.bbi.2025.01.010.


PyNetCor: a high-performance Python package for large-scale correlation analysis.

Long S, Xia Y, Liang L, Yang Y, Xie H, Wang X NAR Genom Bioinform. 2024; 6(4):lqae177.

PMID: 39703431 PMC: 11655297. DOI: 10.1093/nargab/lqae177.


AH-6809 mediated regulation of lung adenocarcinoma metastasis through NLRP7 and prognostic analysis of key metastasis-related genes.

Feng X, Wu W, Liu F Front Pharmacol. 2024; 15:1486265.

PMID: 39697539 PMC: 11652142. DOI: 10.3389/fphar.2024.1486265.


References
1.
Yu H, Greenbaum D, Lu H, Zhu X, Gerstein M . Genomic analysis of essentiality within protein networks. Trends Genet. 2004; 20(6):227-31. DOI: 10.1016/j.tig.2004.04.008. View

2.
Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J . Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006; 98(4):262-72. DOI: 10.1093/jnci/djj052. View

3.
Brunet J, Tamayo P, Golub T, Mesirov J . Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A. 2004; 101(12):4164-9. PMC: 384712. DOI: 10.1073/pnas.0308531101. View

4.
Grimson A, Farh K, Johnston W, Garrett-Engele P, Lim L, Bartel D . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007; 27(1):91-105. PMC: 3800283. DOI: 10.1016/j.molcel.2007.06.017. View

5.
Adler A, Chang H . From description to causality: mechanisms of gene expression signatures in cancer. Cell Cycle. 2006; 5(11):1148-51. DOI: 10.4161/cc.5.11.2798. View