» Articles » PMID: 23945630

Highly Efficient and Robust Cathode Materials for Low-temperature Solid Oxide Fuel Cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ)

Overview
Journal Sci Rep
Specialty Science
Date 2013 Aug 16
PMID 23945630
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.

Citing Articles

Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures.

Li Z, Mao X, Feng D, Li M, Xu X, Luo Y Nat Commun. 2024; 15(1):9318.

PMID: 39472575 PMC: 11522418. DOI: 10.1038/s41467-024-53578-7.


Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies.

Kim Y, Jeong H, Won B, Jeon H, Park C, Park D Nanomicro Lett. 2023; 16(1):33.

PMID: 38015283 PMC: 10684483. DOI: 10.1007/s40820-023-01258-4.


Unveiling the Electrocatalytic Activity of the GdBaSrCoCuO ( ≥ 1) Oxygen Electrodes for Solid Oxide Cells.

Li K, Swierczek K, Winiarz P, Brzoza-Kos A, Stepien A, Du Z ACS Appl Mater Interfaces. 2023; 15(33):39578-39593.

PMID: 37558244 PMC: 10450687. DOI: 10.1021/acsami.3c08667.


A first-principles study on divergent reactions of using a SrFeO cathode in both oxygen ion conducting and proton conducting solid oxide fuel cells.

Tan W, Huan D, Yang W, Shi N, Wang W, Peng R RSC Adv. 2022; 8(47):26448-26460.

PMID: 35541048 PMC: 9083137. DOI: 10.1039/c8ra04059a.


Standardized Procedures Important for Improving Low-Temperature Ceramic Fuel Cell Technology: From Transient to Steady State Assessment.

Yang F, Zhang Y, Liu J, Yousaf M, Yang X Nanomaterials (Basel). 2021; 11(8).

PMID: 34443752 PMC: 8399102. DOI: 10.3390/nano11081923.


References
1.
Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M . Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nat Commun. 2011; 2:357. PMC: 3157151. DOI: 10.1038/ncomms1359. View

2.
Kresse , Hafner . Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter. 1993; 47(1):558-561. DOI: 10.1103/physrevb.47.558. View

3.
Shin T, Ida S, Ishihara T . Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J Am Chem Soc. 2011; 133(48):19399-407. DOI: 10.1021/ja206278f. View

4.
Blochl . Projector augmented-wave method. Phys Rev B Condens Matter. 1994; 50(24):17953-17979. DOI: 10.1103/physrevb.50.17953. View

5.
Shao Z, Haile S . A high-performance cathode for the next generation of solid-oxide fuel cells. Nature. 2004; 431(7005):170-3. DOI: 10.1038/nature02863. View