» Articles » PMID: 22751426

Computational Tools for Prioritizing Candidate Genes: Boosting Disease Gene Discovery

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2012 Jul 4
PMID 22751426
Citations 210
Authors
Affiliations
Soon will be listed here.
Abstract

At different stages of any research project, molecular biologists need to choose - often somewhat arbitrarily, even after careful statistical data analysis - which genes or proteins to investigate further experimentally and which to leave out because of limited resources. Computational methods that integrate complex, heterogeneous data sets - such as expression data, sequence information, functional annotation and the biomedical literature - allow prioritizing genes for future study in a more informed way. Such methods can substantially increase the yield of downstream studies and are becoming invaluable to researchers.

Citing Articles

Evaluation of penalized and machine learning methods for asthma disease prediction in the Korean Genome and Epidemiology Study (KoGES).

Choi Y, Cha J, Choi S BMC Bioinformatics. 2024; 25(1):56.

PMID: 38308205 PMC: 10837879. DOI: 10.1186/s12859-024-05677-x.


STIGMA: Single-cell tissue-specific gene prioritization using machine learning.

Balachandran S, Prada-Medina C, Mensah M, Kakar N, Nagel I, Pozojevic J Am J Hum Genet. 2024; 111(2):338-349.

PMID: 38228144 PMC: 10870135. DOI: 10.1016/j.ajhg.2023.12.011.


Genome interpretation in a federated learning context allows the multi-center exome-based risk prediction of Crohn's disease patients.

Raimondi D, Chizari H, Verplaetse N, Loscher B, Franke A, Moreau Y Sci Rep. 2023; 13(1):19449.

PMID: 37945674 PMC: 10636050. DOI: 10.1038/s41598-023-46887-2.


Detecting biased validation of predictive models in the positive-unlabeled setting: disease gene prioritization case study.

Molotkov I, Artomov M Bioinform Adv. 2023; 3(1):vbad128.

PMID: 37745001 PMC: 10517638. DOI: 10.1093/bioadv/vbad128.


Evolutionary history of MEK1 illuminates the nature of deleterious mutations.

Andrianova E, Marmion R, Shvartsman S, Zhulin I Proc Natl Acad Sci U S A. 2023; 120(34):e2304184120.

PMID: 37579140 PMC: 10450672. DOI: 10.1073/pnas.2304184120.


References
1.
Tiffin N, Adie E, Turner F, Brunner H, van Driel M, Oti M . Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 2006; 34(10):3067-81. PMC: 1475747. DOI: 10.1093/nar/gkl381. View

2.
Van Vooren S, Thienpont B, Menten B, Speleman F, De Moor B, Vermeesch J . Mapping biomedical concepts onto the human genome by mining literature on chromosomal aberrations. Nucleic Acids Res. 2007; 35(8):2533-43. PMC: 1885641. DOI: 10.1093/nar/gkm054. View

3.
Baudot A, Gomez-Lopez G, Valencia A . Translational disease interpretation with molecular networks. Genome Biol. 2009; 10(6):221. PMC: 2718486. DOI: 10.1186/gb-2009-10-6-221. View

4.
Chen J, Xu H, Aronow B, Jegga A . Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics. 2007; 8:392. PMC: 2194797. DOI: 10.1186/1471-2105-8-392. View

5.
Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, dAdamo P, Calvo S . MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet. 2006; 38(5):570-5. DOI: 10.1038/ng1765. View