» Articles » PMID: 27874829

In Vivo Vizualisation of Mono-ADP-ribosylation by DPARP16 Upon Amino-acid Starvation

Overview
Journal Elife
Specialty Biology
Date 2016 Nov 23
PMID 27874829
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress.

Citing Articles

The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots.

Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M Nat Commun. 2025; 16(1):1021.

PMID: 39863576 PMC: 11762756. DOI: 10.1038/s41467-025-56346-3.


An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules.

De Graeve F, Debreuve E, Pushpalatha K, Zhang X, Rahmoun S, Kozlowski D J Cell Sci. 2024; 137(23).

PMID: 39479884 PMC: 11698055. DOI: 10.1242/jcs.262119.


PARP enzymes and mono-ADP-ribosylation: advancing the connection from interferon-signalling to cancer biology.

Morone B, Grimaldi G Expert Rev Mol Med. 2024; 26:e17.

PMID: 39189367 PMC: 11440612. DOI: 10.1017/erm.2024.13.


Protein condensates as flexible platforms for membrane traffic.

Wilfling F, Kaksonen M, Stachowiak J Curr Opin Cell Biol. 2023; 85:102258.

PMID: 37832166 PMC: 11165926. DOI: 10.1016/j.ceb.2023.102258.


PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools.

Dasovich M, Leung A Mol Cell. 2023; 83(10):1552-1572.

PMID: 37119811 PMC: 10202152. DOI: 10.1016/j.molcel.2023.04.009.


References
1.
Audas T, Audas D, Jacob M, Ho J, Khacho M, Wang M . Adaptation to Stressors by Systemic Protein Amyloidogenesis. Dev Cell. 2016; 39(2):155-168. PMC: 5098424. DOI: 10.1016/j.devcel.2016.09.002. View

2.
Zacharogianni M, Aguilera-Gomez A, Veenendaal T, Smout J, Rabouille C . A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation. Elife. 2014; 3. PMC: 4270098. DOI: 10.7554/eLife.04132. View

3.
Butepage M, Eckei L, Verheugd P, Luscher B . Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells. 2015; 4(4):569-95. PMC: 4695847. DOI: 10.3390/cells4040569. View

4.
Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner A . Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol. 2005; 12(7):624-5. DOI: 10.1038/nsmb956. View

5.
Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G . A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol. 2013; 20(4):508-14. PMC: 7097781. DOI: 10.1038/nsmb.2523. View