» Articles » PMID: 27872314

Molecular Basis for the Broad Substrate Selectivity of a Peptide Prenyltransferase

Overview
Specialty Science
Date 2016 Nov 23
PMID 27872314
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The cyanobactin prenyltransferases catalyze a series of known or unprecedented reactions on millions of different substrates, with no easily observable recognition motif and exquisite regioselectivity. Here we define the basis of broad substrate tolerance for the otherwise uncharacterized TruF family. We determined the structures of the Tyr-prenylating enzyme PagF, in complex with an isoprenoid donor analog and a panel of linear and macrocyclic peptide substrates. Unexpectedly, the structures reveal a truncated barrel fold, wherein binding of large peptide substrates is necessary to complete a solvent-exposed hydrophobic pocket to form the catalytically competent active site. Kinetic, mutational, chemical, and computational analyses revealed the structural basis of selectivity, showing a small motif within peptide substrates that is sufficient for recognition by the enzyme. Attaching this 2-residue motif to two random peptides results in their isoprenylation by PagF, demonstrating utility as a general biocatalytic platform for modifications on any peptide substrate.

Citing Articles

De novo design of ribosomally synthesized and post-translationally modified peptides.

Glassey E, Zhang Z, King A, Niquille D, Voigt C Nat Chem. 2025; 17(2):233-245.

PMID: 39774303 DOI: 10.1038/s41557-024-01685-9.


Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532.

Castelo-Branco R, Pereira J, Freitas S, Preto M, Vieira A, Morais J J Nat Prod. 2024; 88(1):86-93.

PMID: 39718459 PMC: 11774001. DOI: 10.1021/acs.jnatprod.4c01063.


Ribosomal peptides with polycyclic isoprenoid moieties.

Hubrich F, Kandy S, Chepkirui C, Padhi C, Mordhorst S, Moosmann P Chem. 2024; 10(10):3224-3242.

PMID: 39429465 PMC: 11484575. DOI: 10.1016/j.chempr.2024.07.026.


Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ.

Miyata A, Ito S, Fujinami D Adv Sci (Weinh). 2023; 11(6):e2307372.

PMID: 38059776 PMC: 10853753. DOI: 10.1002/advs.202307372.


AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes.

Gordon C, Hendrix E, He Y, Walker M Biomolecules. 2023; 13(8).

PMID: 37627309 PMC: 10452190. DOI: 10.3390/biom13081243.


References
1.
Oman T, van der Donk W . Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol. 2009; 6(1):9-18. PMC: 3799897. DOI: 10.1038/nchembio.286. View

2.
McIntosh J, Donia M, Nair S, Schmidt E . Enzymatic basis of ribosomal peptide prenylation in cyanobacteria. J Am Chem Soc. 2011; 133(34):13698-705. PMC: 3170831. DOI: 10.1021/ja205458h. View

3.
Metzger U, Keller S, Stevenson C, Heide L, Lawson D . Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. J Mol Biol. 2010; 404(4):611-26. DOI: 10.1016/j.jmb.2010.09.067. View

4.
Zhang F, Casey P . Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996; 65:241-69. DOI: 10.1146/annurev.bi.65.070196.001325. View

5.
Sivonen K, Leikoski N, Fewer D, Jokela J . Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol. 2010; 86(5):1213-25. PMC: 2854353. DOI: 10.1007/s00253-010-2482-x. View