» Articles » PMID: 27852776

Somatic and Reinforcement-Based Plasticity in the Initial Stages of Human Motor Learning

Overview
Journal J Neurosci
Specialty Neurology
Date 2016 Nov 18
PMID 27852776
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Significance Statement: In the initial stages of motor learning, the placement of the limbs is learned primarily through trial and error. In an experimental analog, participants make reaching movements to a hidden target and receive positive feedback when successful. We identified sources of plasticity based on changes in functional connectivity using resting-state fMRI. The main finding is that there is a strengthening of connectivity between reward-related prefrontal areas and sensorimotor areas in the basal ganglia and frontal cortex. There is also a strengthening of connectivity related to movement exploration in sensorimotor circuits involved in somatic memory and decision making. The results indicate that initial stages of motor learning depend on plasticity in somatic and prefrontal networks related to reward and exploration.

Citing Articles

Decomposition of a complex motor skill with precise error feedback and intensive training breaks expertise ceiling.

Kimoto Y, Hirano M, Furuya S Commun Biol. 2025; 8(1):118.

PMID: 39856243 PMC: 11761348. DOI: 10.1038/s42003-025-07562-6.


Vagus nerve stimulation during training fails to improve learning in healthy rats.

Carroll A, Pruitt D, Riley J, Danaphongse T, Rennaker R, Engineer C Sci Rep. 2024; 14(1):18955.

PMID: 39147873 PMC: 11327266. DOI: 10.1038/s41598-024-69666-z.


Role of proprioception in corrective visually-guided movements: larger movement errors in both arms of a deafferented individual compared to control participants.

Jayasinghe S, Sainburg R, Sarlegna F Exp Brain Res. 2024; 242(10):2329-2340.

PMID: 39110161 PMC: 11905829. DOI: 10.1007/s00221-024-06901-z.


Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills.

Vassiliadis P, Beanato E, Popa T, Windel F, Morishita T, Neufeld E Nat Hum Behav. 2024; 8(8):1581-1598.

PMID: 38811696 PMC: 11343719. DOI: 10.1038/s41562-024-01901-z.


Myoelectric control and virtual reality to enhance motor rehabilitation after stroke.

Berger D, dAvella A Front Bioeng Biotechnol. 2024; 12:1376000.

PMID: 38665814 PMC: 11043476. DOI: 10.3389/fbioe.2024.1376000.


References
1.
Krakauer J, Ghez C, Ghilardi M . Adaptation to visuomotor transformations: consolidation, interference, and forgetting. J Neurosci. 2005; 25(2):473-8. PMC: 6725486. DOI: 10.1523/JNEUROSCI.4218-04.2005. View

2.
Greve D, Fischl B . Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009; 48(1):63-72. PMC: 2733527. DOI: 10.1016/j.neuroimage.2009.06.060. View

3.
Smith D, Hayden B, Truong T, Song A, Platt M, Huettel S . Distinct value signals in anterior and posterior ventromedial prefrontal cortex. J Neurosci. 2010; 30(7):2490-5. PMC: 2856318. DOI: 10.1523/JNEUROSCI.3319-09.2010. View

4.
Bernier P, Grafton S . Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context. Neuron. 2010; 68(4):776-88. DOI: 10.1016/j.neuron.2010.11.002. View

5.
ODoherty J, Critchley H, Deichmann R, Dolan R . Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices. J Neurosci. 2003; 23(21):7931-9. PMC: 6740603. View