» Articles » PMID: 27841259

Selective Removal of Deletion-bearing Mitochondrial DNA in Heteroplasmic Drosophila

Overview
Journal Nat Commun
Specialty Biology
Date 2016 Nov 15
PMID 27841259
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial DNA (mtDNA) often exists in a state of heteroplasmy, in which mutant mtDNA co-exists in cells with wild-type mtDNA. High frequencies of pathogenic mtDNA result in maternally inherited diseases; maternally and somatically acquired mutations also accumulate over time and contribute to diseases of ageing. Reducing heteroplasmy is therefore a therapeutic goal and in vivo models in post-mitotic tissues are needed to facilitate these studies. Here we describe a transgene-based model of a heteroplasmic lethal mtDNA deletion (mtDNA) in adult Drosophila muscle. Stimulation of autophagy, activation of the PINK1/parkin pathway or decreased levels of mitofusin result in a selective decrease in mtDNA. Decreased levels of mitofusin and increased levels of ATPIF1, an inhibitor of ATP synthase reversal-dependent mitochondrial repolarization, result in a further decrease in mtDNA levels. These results show that an adult post-mitotic tissue can be cleansed of a deleterious genome, suggesting that therapeutic removal of mutant mtDNA can be achieved.

Citing Articles

Exonuclease action of replicative polymerase gamma drives damage-induced mitochondrial DNA clearance.

Seshadri A, Badrinarayanan A EMBO Rep. 2025; 26(5):1385-1405.

PMID: 39890960 PMC: 11894172. DOI: 10.1038/s44319-025-00380-1.


Selection promotes age-dependent degeneration of the mitochondrial genome.

Korotkevich E, Conrad D, Gartner Z, OFarrell P bioRxiv. 2024; .

PMID: 39386732 PMC: 11463671. DOI: 10.1101/2024.09.27.615276.


Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans.

Gitschlag B, Pereira C, Held J, McCandlish D, Patel M Nat Commun. 2024; 15(1):8237.

PMID: 39300074 PMC: 11413162. DOI: 10.1038/s41467-024-52596-9.


Mitochondrial heterogeneity and crosstalk in aging: Time for a paradigm shift?.

Hinton Jr A, Vue Z, Scudese E, Neikirk K, Kirabo A, Montano M Aging Cell. 2024; 23(10):e14296.

PMID: 39188058 PMC: 11464123. DOI: 10.1111/acel.14296.


Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay .

Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J Natl Sci Rev. 2024; 11(5):nwae118.

PMID: 38742234 PMC: 11089818. DOI: 10.1093/nsr/nwae118.


References
1.
Feng Y, Yao Z, Klionsky D . How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol. 2015; 25(6):354-63. PMC: 4441840. DOI: 10.1016/j.tcb.2015.02.002. View

2.
Guo M . Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease. Cold Spring Harb Perspect Med. 2012; 2(11). PMC: 3543109. DOI: 10.1101/cshperspect.a009944. View

3.
Wallace D, Zheng X, Lott M, Shoffner J, Hodge J, Kelley R . Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988; 55(4):601-10. DOI: 10.1016/0092-8674(88)90218-8. View

4.
Poole A, Thomas R, Andrews L, McBride H, Whitworth A, Pallanck L . The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008; 105(5):1638-43. PMC: 2234197. DOI: 10.1073/pnas.0709336105. View

5.
Minczuk M, Papworth M, Miller J, Murphy M, Klug A . Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 2008; 36(12):3926-38. PMC: 2475635. DOI: 10.1093/nar/gkn313. View