» Articles » PMID: 27791011

Data-driven Identification of Prognostic Tumor Subpopulations Using Spatially Mapped T-SNE of Mass Spectrometry Imaging Data

Overview
Specialty Science
Date 2016 Oct 30
PMID 27791011
Citations 58
Authors
Affiliations
Soon will be listed here.
Abstract

The identification of tumor subpopulations that adversely affect patient outcomes is essential for a more targeted investigation into how tumors develop detrimental phenotypes, as well as for personalized therapy. Mass spectrometry imaging has demonstrated the ability to uncover molecular intratumor heterogeneity. The challenge has been to conduct an objective analysis of the resulting data to identify those tumor subpopulations that affect patient outcome. Here we introduce spatially mapped t-distributed stochastic neighbor embedding (t-SNE), a nonlinear visualization of the data that is able to better resolve the biomolecular intratumor heterogeneity. In an unbiased manner, t-SNE can uncover tumor subpopulations that are statistically linked to patient survival in gastric cancer and metastasis status in primary tumors of breast cancer.

Citing Articles

Research on the improvement method of imbalance of ground penetrating radar image data.

Cao L, Liu L, Lu C, Chen R Sci Rep. 2025; 15(1):2859.

PMID: 39843521 PMC: 11754838. DOI: 10.1038/s41598-025-87123-3.


Unraveling Spatial Heterogeneity in Mass Spectrometry Imaging Data with GraphMSI.

Guo L, Xie P, Shen X, Lam T, Deng L, Xie C Adv Sci (Weinh). 2025; 12(8):e2410840.

PMID: 39778027 PMC: 11848592. DOI: 10.1002/advs.202410840.


Rapid and Robust Workflows Using Different Ionization, Computation, and Visualization Approaches for Spatial Metabolome Profiling of Microbial Natural Products in .

Yu J, Metwally H, Kolwich J, Tomm H, Kaufmann M, Klotz R ACS Meas Sci Au. 2024; 4(6):668-677.

PMID: 39713036 PMC: 11659995. DOI: 10.1021/acsmeasuresciau.4c00035.


Identification of novel markers for neuroblastoma immunoclustering using machine learning.

Zhang L, Li H, Sun F, Wu Q, Jin L, Xu A Front Immunol. 2024; 15:1446273.

PMID: 39559348 PMC: 11570813. DOI: 10.3389/fimmu.2024.1446273.


Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models.

Shi H, Kowalczewski A, Vu D, Liu X, Salekin A, Yang H Med Nov Technol Devices. 2024; 21.

PMID: 38646471 PMC: 11027187. DOI: 10.1016/j.medntd.2023.100276.


References
1.
Canny J . A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 2011; 8(6):679-98. View

2.
Addie R, Balluff B, Bovee J, Morreau H, McDonnell L . Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research. Anal Chem. 2015; 87(13):6426-33. DOI: 10.1021/acs.analchem.5b00416. View

3.
Murugaesu N, Chew S, Swanton C . Adapting clinical paradigms to the challenges of cancer clonal evolution. Am J Pathol. 2013; 182(6):1962-71. DOI: 10.1016/j.ajpath.2013.02.026. View

4.
Mahfouz A, van de Giessen M, Maaten L, Huisman S, Reinders M, Hawrylycz M . Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Methods. 2014; 73:79-89. DOI: 10.1016/j.ymeth.2014.10.004. View

5.
Dzyubachyk O, Lelieveldt B, Blaas J, Reijnierse M, Webb A, van der Geest R . Automated algorithm for reconstruction of the complete spine from multistation 7T MR data. Magn Reson Med. 2012; 69(6):1777-86. DOI: 10.1002/mrm.24404. View