Schmidt H, Hagens J, Schuppert P, Appl B, Pagerols Raluy L, Trochimiuk M
Sci Rep. 2023; 13(1):10574.
PMID: 37386088
PMC: 10310722.
DOI: 10.1038/s41598-023-37354-z.
Durnik R, Sindlerova L, Babica P, Jurcek O
Molecules. 2022; 27(9).
PMID: 35566302
PMC: 9103499.
DOI: 10.3390/molecules27092961.
Juarez-Fernandez M, Porras D, Petrov P, Roman-Saguillo S, Garcia-Mediavilla M, Soluyanova P
Antioxidants (Basel). 2021; 10(12).
PMID: 34943104
PMC: 8698339.
DOI: 10.3390/antiox10122001.
Doerfler H, Botesteanu D, Blech S, Laux R
Front Mol Biosci. 2021; 7:598369.
PMID: 33521051
PMC: 7843463.
DOI: 10.3389/fmolb.2020.598369.
Wren S, Donovan M, Selmin O, Doetschman T, Romagnolo D
Int J Mol Sci. 2020; 21(21).
PMID: 33105708
PMC: 7659968.
DOI: 10.3390/ijms21217829.
Increased whole body energy expenditure and protection against diet-induced obesity in Cyp8b1-deficient mice is accompanied by altered adipose tissue features.
Axling U, Cavalera M, Degerman E, Gafvels M, Eggertsen G, Holm C
Adipocyte. 2020; 9(1):587-599.
PMID: 33016185
PMC: 7553510.
DOI: 10.1080/21623945.2020.1827519.
Isoxanthohumol, a hop-derived flavonoid, alters the metabolomics profile of mouse feces.
Fukizawa S, Yamashita M, Fujisaka S, Tobe K, Nonaka Y, Murayama N
Biosci Microbiota Food Health. 2020; 39(3):100-108.
PMID: 32775127
PMC: 7392914.
DOI: 10.12938/bmfh.2019-045.
Quantification of common and planar bile acids in tissues and cultured cells.
Shiffka S, Jones J, Li L, Farese A, MacVittie T, Wang H
J Lipid Res. 2020; 61(11):1524-1535.
PMID: 32718973
PMC: 7604731.
DOI: 10.1194/jlr.D120000726.
IBD and Bile Acid Absorption: Focus on Pre-clinical and Clinical Observations.
Fitzpatrick L, Jenabzadeh P
Front Physiol. 2020; 11:564.
PMID: 32595517
PMC: 7303840.
DOI: 10.3389/fphys.2020.00564.
Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes.
Calderon G, McRae A, Rievaj J, Davis J, Zandvakili I, Linker-Nord S
EBioMedicine. 2020; 55:102759.
PMID: 32344198
PMC: 7186521.
DOI: 10.1016/j.ebiom.2020.102759.
Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism.
Straniero S, Laskar A, Savva C, Hardfeldt J, Angelin B, Rudling M
J Lipid Res. 2020; 61(4):480-491.
PMID: 32086245
PMC: 7112145.
DOI: 10.1194/jlr.RA119000307.
Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition.
Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T
J Lipid Res. 2019; 61(1):54-69.
PMID: 31645370
PMC: 6939601.
DOI: 10.1194/jlr.RA119000395.
Animal models to study bile acid metabolism.
Li J, Dawson P
Biochim Biophys Acta Mol Basis Dis. 2018; 1865(5):895-911.
PMID: 29782919
PMC: 6242766.
DOI: 10.1016/j.bbadis.2018.05.011.
MALDI Mass Spectral Imaging of Bile Acids Observed as Deprotonated Molecules and Proton-Bound Dimers from Mouse Liver Sections.
Rzagalinski I, Hainz N, Meier C, Tschernig T, Volmer D
J Am Soc Mass Spectrom. 2018; 29(4):711-722.
PMID: 29417494
PMC: 5889423.
DOI: 10.1007/s13361-017-1886-6.
Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.
Thanissery R, Winston J, Theriot C
Anaerobe. 2017; 45:86-100.
PMID: 28279860
PMC: 5466893.
DOI: 10.1016/j.anaerobe.2017.03.004.