» Articles » PMID: 27762343

Cryo-EM Structure of the Large Subunit of the Spinach Chloroplast Ribosome

Overview
Journal Sci Rep
Specialty Science
Date 2016 Oct 21
PMID 27762343
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features.

Citing Articles

Diversification of Plastid Structure and Function in Land Plants.

Aronsson H, Solymosi K Methods Mol Biol. 2024; 2776:63-88.

PMID: 38502498 DOI: 10.1007/978-1-0716-3726-5_4.


Perturbation of protein homeostasis brings plastids at the crossroad between repair and dismantling.

Tadini L, Jeran N, Domingo G, Zambelli F, Masiero S, Calabritto A PLoS Genet. 2023; 19(7):e1010344.

PMID: 37418499 PMC: 10355426. DOI: 10.1371/journal.pgen.1010344.


Chloroplast gene expression: Recent advances and perspectives.

Zhang Y, Tian L, Lu C Plant Commun. 2023; 4(5):100611.

PMID: 37147800 PMC: 10504595. DOI: 10.1016/j.xplc.2023.100611.


Plastid ribosome protein L5 is essential for post-globular embryo development in Arabidopsis thaliana.

Dupouy G, McDermott E, Cashell R, Scian A, McHale M, Ryder P Plant Reprod. 2022; 35(3):189-204.

PMID: 35247095 PMC: 9352626. DOI: 10.1007/s00497-022-00440-9.


CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks.

Zhong E, Bepler T, Berger B, Davis J Nat Methods. 2021; 18(2):176-185.

PMID: 33542510 PMC: 8183613. DOI: 10.1038/s41592-020-01049-4.


References
1.
Amunts A, Brown A, Bai X, Llacer J, Hussain T, Emsley P . Structure of the yeast mitochondrial large ribosomal subunit. Science. 2014; 343(6178):1485-1489. PMC: 4046073. DOI: 10.1126/science.1249410. View

2.
Martin , Herrmann . Gene transfer from organelles to the nucleus: how much, what happens, and Why? . Plant Physiol. 1998; 118(1):9-17. PMC: 1539188. DOI: 10.1104/pp.118.1.9. View

3.
Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli L . The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J Biol Chem. 2001; 276(22):19363-74. DOI: 10.1074/jbc.M100727200. View

4.
Anderson S, Bankier A, Barrell B, de Bruijn M, Coulson A, Drouin J . Sequence and organization of the human mitochondrial genome. Nature. 1981; 290(5806):457-65. DOI: 10.1038/290457a0. View

5.
OBrien T . Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene. 2002; 286(1):73-9. DOI: 10.1016/s0378-1119(01)00808-3. View