» Articles » PMID: 27549369

The Potential Impact of Bone Tissue Engineering in the Clinic

Overview
Journal Regen Med
Specialty Biotechnology
Date 2016 Aug 24
PMID 27549369
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Bone tissue engineering (BTE) intends to restore structural support for movement and mineral homeostasis, and assist in hematopoiesis and the protective functions of bone in traumatic, degenerative, cancer, or congenital malformation. While much effort has been put into BTE, very little of this research has been translated to the clinic. In this review, we discuss current regenerative medicine and restorative strategies that utilize tissue engineering approaches to address bone defects within a clinical setting. These approaches involve the primary components of tissue engineering: cells, growth factors and biomaterials discussed briefly in light of their clinical relevance. This review also presents upcoming advanced approaches for BTE applications and suggests a probable workpath for translation from the laboratory to the clinic.

Citing Articles

Enhancing bone regeneration through 3D printed biphasic calcium phosphate scaffolds featuring graded pore sizes.

Wang Y, Liu Y, Chen S, Francis Siu M, Liu C, Bai J Bioact Mater. 2024; 46:21-36.

PMID: 39734570 PMC: 11681834. DOI: 10.1016/j.bioactmat.2024.11.024.


Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.

Gaihre B, Astudillo Potes M, Liu X, Tilton M, Camilleri E, Rezaei A J Biomed Mater Res A. 2023; 112(5):672-684.

PMID: 37971074 PMC: 10948318. DOI: 10.1002/jbm.a.37646.


The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering.

Agnes C, Karoichan A, Tabrizian M ACS Appl Bio Mater. 2023; 6(7):2515-2545.

PMID: 37310896 PMC: 10354806. DOI: 10.1021/acsabm.3c00108.


Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials.

Lv X, Wang S, Xu Z, Liu X, Liu G, Cao F Biomimetics (Basel). 2023; 8(2).

PMID: 37092418 PMC: 10123638. DOI: 10.3390/biomimetics8020166.


Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy.

Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P Front Bioeng Biotechnol. 2023; 11:1167474.

PMID: 37091350 PMC: 10119417. DOI: 10.3389/fbioe.2023.1167474.


References
1.
Thomson R, Mikos A, Beahm E, Lemon J, Satterfield W, Aufdemorte T . Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials. 1999; 20(21):2007-18. DOI: 10.1016/s0142-9612(99)00103-9. View

2.
Laursen M, Hoy K, Hansen E, Gelineck J, Christensen F, Bunger C . Recombinant bone morphogenetic protein-7 as an intracorporal bone growth stimulator in unstable thoracolumbar burst fractures in humans: preliminary results. Eur Spine J. 2000; 8(6):485-90. PMC: 3611219. DOI: 10.1007/s005860050210. View

3.
Burg K, Porter S, Kellam J . Biomaterial developments for bone tissue engineering. Biomaterials. 2000; 21(23):2347-59. DOI: 10.1016/s0142-9612(00)00102-2. View

4.
Kenneth Burkus J, Transfeldt E, Kitchel S, Watkins R, Balderston R . Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976). 2002; 27(21):2396-408. DOI: 10.1097/00007632-200211010-00015. View

5.
Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E . Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2002; 101(9):3722-9. DOI: 10.1182/blood-2002-07-2104. View