» Articles » PMID: 27545712

Cortical Feedback Regulates Feedforward Retinogeniculate Refinement

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2016 Aug 23
PMID 27545712
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection.

Citing Articles

Pervasive alterations of intra-axonal volume and network organization in young children with a 16p11.2 deletion.

Maillard A, Romascano D, Villalon-Reina J, Moreau C, Almeida Osorio J, Richetin S Transl Psychiatry. 2024; 14(1):95.

PMID: 38355713 PMC: 10866898. DOI: 10.1038/s41398-024-02810-5.


Thalamic regulation of ocular dominance plasticity in adult visual cortex.

Qin Y, Ahmadlou M, Suhai S, Neering P, de Kraker L, Heimel J Elife. 2023; 12.

PMID: 37796249 PMC: 10554735. DOI: 10.7554/eLife.88124.


Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.

Nagappan-Chettiar S, Burbridge T, Umemori H Neuroscientist. 2023; 30(6):673-689.

PMID: 37140155 PMC: 11584027. DOI: 10.1177/10738584231170167.


An Early Enriched Experience Drives an Activated Microglial Profile at Site of Corrective Neuroplasticity in Ten-m3 Knock-Out Mice.

Rogerson-Wood L, Petersen J, Kairouz A, Goldsbury C, Sawatari A, Leamey C eNeuro. 2023; 10(1).

PMID: 36635245 PMC: 9831145. DOI: 10.1523/ENEURO.0162-22.2022.


Cortical feedback modulates distinct critical period development in mouse visual thalamus.

Li N, Liu Q, Zhang Y, Yang Z, Shi X, Gu Y iScience. 2023; 26(1):105752.

PMID: 36590174 PMC: 9794980. DOI: 10.1016/j.isci.2022.105752.


References
1.
Cudeiro J, Sillito A . Looking back: corticothalamic feedback and early visual processing. Trends Neurosci. 2006; 29(6):298-306. DOI: 10.1016/j.tins.2006.05.002. View

2.
Kang E, Durand S, LeBlanc J, Hensch T, Chen C, Fagiolini M . Visual acuity development and plasticity in the absence of sensory experience. J Neurosci. 2013; 33(45):17789-96. PMC: 3818552. DOI: 10.1523/JNEUROSCI.1500-13.2013. View

3.
Chen C, Regehr W . Developmental remodeling of the retinogeniculate synapse. Neuron. 2001; 28(3):955-66. DOI: 10.1016/s0896-6273(00)00166-5. View

4.
Guillery R, Sherman S . Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002; 33(2):163-75. DOI: 10.1016/s0896-6273(01)00582-7. View

5.
Triplett J, Owens M, Yamada J, Lemke G, Cang J, Stryker M . Retinal input instructs alignment of visual topographic maps. Cell. 2009; 139(1):175-85. PMC: 2814139. DOI: 10.1016/j.cell.2009.08.028. View