» Articles » PMID: 32272065

Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2020 Apr 10
PMID 32272065
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.

Citing Articles

The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases.

Manns M, Juckel G, Freund N Brain Sci. 2025; 15(2).

PMID: 40002502 PMC: 11852682. DOI: 10.3390/brainsci15020169.


Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex.

Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X Proc Natl Acad Sci U S A. 2025; 122(7):e2421022122.

PMID: 39946537 PMC: 11848306. DOI: 10.1073/pnas.2421022122.


Transcorneal Electrical Stimulation Modulates Visual Pathway Function in Mice.

Castoldi V, Rossi E, Marenna S, Comi G, Leocani L J Neurosci Res. 2025; 103(2):e70026.

PMID: 39931921 PMC: 11811922. DOI: 10.1002/jnr.70026.


High-confidence and high-throughput quantification of synapse engulfment by oligodendrocyte precursor cells.

Kahng J, Xavier A, Ferro A, Tang S, Auguste Y, Cheadle L Nat Protoc. 2024; 20(2):407-439.

PMID: 39363108 PMC: 11805640. DOI: 10.1038/s41596-024-01048-1.


Microglial Modulation of Synaptic Maturation, Activity, and Plasticity.

Pinto M, Ragozzino D, Bessis A, Audinat E Adv Neurobiol. 2024; 37:209-219.

PMID: 39207694 DOI: 10.1007/978-3-031-55529-9_12.


References
1.
Cynader M, Berman N, Hein A . Recovery of function in cat visual cortex following prolonged deprivation. Exp Brain Res. 1976; 25(2):139-56. DOI: 10.1007/BF00234899. View

2.
Antonini A, Fagiolini M, Stryker M . Anatomical correlates of functional plasticity in mouse visual cortex. J Neurosci. 1999; 19(11):4388-406. PMC: 2452998. View

3.
Gouwens N, Sorensen S, Berg J, Lee C, Jarsky T, Ting J . Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nat Neurosci. 2019; 22(7):1182-1195. PMC: 8078853. DOI: 10.1038/s41593-019-0417-0. View

4.
Huang Z, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear M . BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999; 98(6):739-55. DOI: 10.1016/s0092-8674(00)81509-3. View

5.
Wallace M, van Woerden G, Elgersma Y, Smith S, Philpot B . loss increases excitability and blunts orientation tuning in the visual cortex of Angelman syndrome model mice. J Neurophysiol. 2017; 118(1):634-646. PMC: 5511875. DOI: 10.1152/jn.00618.2016. View