» Articles » PMID: 27545506

Enhancing a Wnt-Telomere Feedback Loop Restores Intestinal Stem Cell Function in a Human Organotypic Model of Dyskeratosis Congenita

Overview
Journal Cell Stem Cell
Publisher Cell Press
Specialty Cell Biology
Date 2016 Aug 23
PMID 27545506
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Patients with dyskeratosis congenita (DC) suffer from stem cell failure in highly proliferative tissues, including the intestinal epithelium. Few therapeutic options exist for this disorder, and patients are treated primarily with bone marrow transplantation to restore hematopoietic function. Here, we generate isogenic DC patient and disease allele-corrected intestinal tissue using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene correction in induced pluripotent stem cells and directed differentiation. We show that DC tissue has suboptimal Wnt pathway activity causing intestinal stem cell failure and that enhanced expression of the telomere-capping protein TRF2, a Wnt target gene, can alleviate DC phenotypes. Treatment with the clinically relevant Wnt agonists LiCl or CHIR99021 restored TRF2 expression and reversed gastrointestinal DC phenotypes, including organoid formation in vitro, and maturation of intestinal tissue and xenografted organoids in vivo. Thus, the isogenic DC cell model provides a platform for therapeutic discovery and identifies Wnt modulation as a potential strategy for treatment of DC patients.

Citing Articles

Translational Utility of Organoid Models for Biomedical Research on Gastrointestinal Diseases.

Banerjee P, Senapati S Stem Cell Rev Rep. 2024; 20(6):1441-1458.

PMID: 38758462 DOI: 10.1007/s12015-024-10733-3.


From cells to organs: progress and potential in cartilaginous organoids research.

Wang X, Liu N, Zhang H, Yin Z, Zha Z J Transl Med. 2023; 21(1):926.

PMID: 38129833 PMC: 10740223. DOI: 10.1186/s12967-023-04591-9.


Fyn-mediated phosphorylation of Menin disrupts telomere maintenance in stem cells.

Paul S, McCourt P, Le L, Ryu J, Czaja W, Bode A bioRxiv. 2023; .

PMID: 37873235 PMC: 10592958. DOI: 10.1101/2023.10.04.560876.


DNA methylation variations and epigenetic aging in telomere biology disorders.

Carlund O, Norberg A, Osterman P, Landfors M, Degerman S, Hultdin M Sci Rep. 2023; 13(1):7955.

PMID: 37193737 PMC: 10188573. DOI: 10.1038/s41598-023-34922-1.


Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine.

El Harane S, Zidi B, El Harane N, Krause K, Matthes T, Preynat-Seauve O Cells. 2023; 12(7).

PMID: 37048073 PMC: 10093533. DOI: 10.3390/cells12071001.


References
1.
Herbig U, Jobling W, Chen B, Chen D, Sedivy J . Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004; 14(4):501-13. DOI: 10.1016/s1097-2765(04)00256-4. View

2.
Womer R, Clark J, Wood P, Sabio H, Kelly T . Dyskeratosis congenita: two examples of this multisystem disorder. Pediatrics. 1983; 71(4):603-9. View

3.
Nera B, Huang H, Lai T, Xu L . Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun. 2015; 6:10132. PMC: 4686832. DOI: 10.1038/ncomms10132. View

4.
Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I . Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science. 2012; 336(6088):1549-54. DOI: 10.1126/science.1218370. View

5.
Mason P, Bessler M . The genetics of dyskeratosis congenita. Cancer Genet. 2012; 204(12):635-45. PMC: 3269008. DOI: 10.1016/j.cancergen.2011.11.002. View