Context:
Identification of factors that enhance the proliferation of human dental mesenchymal stem cells (DMSCs) is vital to facilitate tissue regeneration. The role of low-level laser irradiation (LLLI) on proliferation of human DMSCs has not been well established.
Objective:
To assess the effect of LLLI on proliferation of human DMSCs when applied in-vitro.
Data Sources:
Electronic search of literature was conducted (2000-2016) on PubMed, Web of Science, and Scopus databases. Search terms included low-level light therapy, low-level laser irradiation, low-level light irradiation, LLLT, humans, adolescent, adult, cells, cultured, periodontal ligament, dental pulp, stem cells, dental pulp stem cells, mesenchymal stem cells, periodontal ligament stem cell, deciduous teeth, cell proliferation, adult stem cells, radiation, and proliferation.
Results:
The literature search identified 165 studies with 6 being eligible for inclusion; all used diode lasers; 5 studies used InGaAIP diode lasers; 4 used 660nm, and the other two applied 810nm or 980nm wavelength LLLI. The distance between the DMSCs and the laser spot ranged between 0.5mm to 2mm. The time intervals of cell proliferation analysis ranged from 0h to 7days after LLLI. After 660nm LLLI, an increase in the DMSC's proliferation was reported [DMSCs extracted from dental pulp of deciduous teeth (two irradiations, 3J/cm(2), 20mW was more effective than 40mW), adult teeth (two irradiations, 0.5 and 1.0J/cm(2), 30mW), and from adult periodontal ligament (two irradiations, 1.0J/cm(2) was more effective than 0.5J/cm(2), 30mW)]. Similarly, an increase in the proliferation of DMSCs extracted from dental pulp of adult teeth was reported after 810nm LLLI (7 irradiations in 7days, 0.1 and 0.2J/cm(2), 60mW) or 980nm LLLI (single irradiation, 3J/cm(2), 100mW). However, 660nm LLLI in one study did not increase the proliferation of DMSCs (single irradiation, energy densities of 0.05, 0.30, 7, and 42J/cm(2), 28mW).
Conclusion:
There is limited evidence that in-vitro LLLI (660/810/980nm, with energy densities of 0.1-3J/cm(2)) increases the proliferation of DMSCs. Considering the limited evidence and their method heterogeneity it is difficult to reach a firm conclusion. Further research is necessary to identify the optimal characteristics of the LLLI setting (wave length, energy density, power output, frequency/duration of irradiations, distance between the cells and the laser spot/probe) to increase proliferation of DMSCs, and assess its impact on replicative senescence, as well as determine feasibility of the use in the clinical setting.
Citing Articles
Laser Applications in Regenerative Endodontics: A Review.
Ahrari F, Akhondian S, Shakiba R, Tolouei A, Salehi A, Valizadeh M
J Lasers Med Sci. 2024; 15:e1.
PMID: 38655047
PMC: 11033860.
DOI: 10.34172/jlms.2024.01.
In Vitro Photobiomodulation Effects of Blue and Red Diode Lasers on Proliferation and Differentiation of Periodontal Ligament Mesenchymal Stem Cells.
Sayar F, Garebigloo A, Saberi S, Etemadi A
J Lasers Med Sci. 2024; 15:e5.
PMID: 38655041
PMC: 11033857.
DOI: 10.34172/jlms.2024.05.
Effects of Semiconductor Laser Irradiation on Differentiation of Human Dental Pulp Stem Cells in Co-Culture with Dentin.
Yarita M, Kitajima K, Morita T, Shinkai K
Dent J (Basel). 2024; 12(3).
PMID: 38534291
PMC: 10969079.
DOI: 10.3390/dj12030067.
Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment.
Escobar L, Grajales M, Bendahan Z, Jaimes S, Baldion P
Lasers Med Sci. 2024; 39(1):87.
PMID: 38443654
PMC: 10914891.
DOI: 10.1007/s10103-024-04016-z.
Effect of magnesium oxide nanoparticles and LED irradiation on the viability and differentiation of human stem cells of the apical papilla.
Karkehabadi H, Rahmati A, Abbaspourrokni H, Farmany A, Najafi R, Behroozi R
Biotechnol Lett. 2024; 46(2):263-278.
PMID: 38326543
DOI: 10.1007/s10529-024-03471-6.
The Effect of Low-Level Laser Therapy on the Viability of Human Dental Pulp Stem Cells.
Asnaashari M, Shojaeian S, Mesgharani A, Mehrabinia P
J Lasers Med Sci. 2023; 13:e60.
PMID: 37041791
PMC: 10082911.
DOI: 10.34172/jlms.2022.60.
Combination of Dental Capping Agents With LowLevel Laser Therapy Increases the Cell Viability Percent of Stem Cells From Apical Papilla (SCAPs).
Zafari J, Karkehabadi H, Nikzad F, Esmailnasab S, Abbasi Javan Z, Javani Jouni F
J Lasers Med Sci. 2023; 13:e58.
PMID: 37041775
PMC: 10082912.
DOI: 10.34172/jlms.2022.58.
Photobiomodulation Therapy and Pulp-Regenerative Endodontics: A Narrative Review.
Yong J, Groger S, Wu Z, Ruf S, Ye Y, Chen X
Bioengineering (Basel). 2023; 10(3).
PMID: 36978762
PMC: 10045842.
DOI: 10.3390/bioengineering10030371.
Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues.
Bakhshandeh B, Ranjbar N, Abbasi A, Amiri E, Abedi A, Mehrabi M
Bioeng Transl Med. 2023; 8(2):e10383.
PMID: 36925674
PMC: 10013802.
DOI: 10.1002/btm2.10383.
Effect of diode low level laser and red light emitting diode irradiation on cell proliferation and osteogenic/odontogenic differentiation of stem cells from the apical papilla.
Rahmati A, Abbasi R, Najafi R, Rezaei-Soufi L, Karkehabadi H
BMC Oral Health. 2022; 22(1):543.
PMID: 36434589
PMC: 9701043.
DOI: 10.1186/s12903-022-02574-8.
NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels.
Gholami L, Afshar S, Arkian A, Saeidijam M, Hendi S, Mahmoudi R
Lasers Med Sci. 2022; 37(9):3681-3692.
PMID: 36227520
DOI: 10.1007/s10103-022-03652-7.
Photobiomodulation in 3D tissue engineering.
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y
J Biomed Opt. 2022; 27(9).
PMID: 36104833
PMC: 9473299.
DOI: 10.1117/1.JBO.27.9.090901.
Effects of Two Protocols of Low-Level Laser Therapy on the Proliferation and Differentiation of Human Dental Pulp Stem Cells on Sandblasted Titanium Discs: An Study.
Amid R, Kadkhodazadeh M, Gilvari Sarshari M, Parhizkar A, Mojahedi M
J Lasers Med Sci. 2022; 13:e1.
PMID: 35642237
PMC: 9131293.
DOI: 10.34172/jlms.2022.01.
Photobiomodulation treatments drive osteogenic versus adipocytic fate of bone marrow mesenchymal stem cells reversing the effects of hyperglycemia in diabetes.
Bueno N, Kfouri C, Copete I, de Oliveira F, Arany P, Marques M
Lasers Med Sci. 2022; 37(7):2845-2854.
PMID: 35366748
DOI: 10.1007/s10103-022-03553-9.
Effect of the photobiomodulation for acceleration of the orthodontic tooth movement: a systematic review and meta-analysis.
Olmedo-Hernandez O, Mota-Rodriguez A, Torres-Rosas R, Argueta-Figueroa L
Lasers Med Sci. 2022; 37(5):2323-2341.
PMID: 35304644
DOI: 10.1007/s10103-022-03538-8.
Efficacy of Photobiomodulation and Vitamin D on Odontogenic Activity of Human Dental Pulp Stem Cells.
M Abdelgawad L, Salah N, Sabry D, Abdelgwad M
J Lasers Med Sci. 2021; 12:e30.
PMID: 34733753
PMC: 8558714.
DOI: 10.34172/jlms.2021.30.
LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p.
Liu N, Lu W, Qu X, Zhu C
Lasers Med Sci. 2021; 37(2):849-856.
PMID: 33884524
DOI: 10.1007/s10103-021-03322-0.
Near-infrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells.
Gholami L, Hendi S, Saidijam M, Mahmoudi R, Tarzemany R, Arkian A
Lasers Med Sci. 2021; 37(1):449-459.
PMID: 33740139
DOI: 10.1007/s10103-021-03282-5.
Wound Healing and Cell Dynamics Including Mesenchymal and Dental Pulp Stem Cells Induced by Photobiomodulation Therapy: An Example of Socket-Preserving Effects after Tooth Extraction in Rats and a Literature Review.
Daigo Y, Daigo E, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K
Int J Mol Sci. 2020; 21(18).
PMID: 32961958
PMC: 7555322.
DOI: 10.3390/ijms21186850.
Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation.
Zaccara I, Mestieri L, Pilar E, Moreira M, Grecca F, Martins M
Lasers Med Sci. 2020; 35(3):741-749.
PMID: 32095920
DOI: 10.1007/s10103-019-02931-0.