» Articles » PMID: 27409483

Optical Coherence Tomography Angiography

Overview
Specialty Ophthalmology
Date 2016 Jul 14
PMID 27409483
Citations 170
Authors
Affiliations
Soon will be listed here.
Abstract

Optical coherence tomography angiography (OCTA) is a noninvasive approach that can visualize blood vessels down to the capillary level. With the advent of high-speed OCT and efficient algorithms, practical OCTA of ocular circulation is now available to ophthalmologists. Clinical investigations that used OCTA have increased exponentially in the past few years. This review will cover the history of OCTA and survey its most important clinical applications. The salient problems in the interpretation and analysis of OCTA are described, and recent advances are highlighted.

Citing Articles

Investigating the vascular structure of the conjunctiva in patients using spherical mini-scleral contact lenses utilizing OCT-A imaging.

Alipour F, Abdi P, Asadigandomani H, Khodaparast M, Montazeriani Z, Sajedi M Sci Rep. 2025; 15(1):4759.

PMID: 39922889 PMC: 11807138. DOI: 10.1038/s41598-025-89159-x.


Quantifying the Characteristics of Diabetic Retinopathy in Macular Optical Coherence Tomography Angiography Images: A Few-Shot Learning and Explainable Artificial Intelligence Approach.

Movassagh A, Jajroudi M, Homayoun Jafari A, Khalili Pour E, Farrokhpour H, Faghihi H Cureus. 2025; 17(1):e76746.

PMID: 39897224 PMC: 11785394. DOI: 10.7759/cureus.76746.


Assessing Preclinical Diabetic Retinopathy: The Role of Optical Coherence Tomography Angiography.

Pamulapati P, Das M, Mohanty G Cureus. 2024; 16(10):e72747.

PMID: 39618580 PMC: 11607564. DOI: 10.7759/cureus.72747.


Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes.

Belbase U, Maharjan I, Subedi A J Curr Ophthalmol. 2024; 36(1):31-36.

PMID: 39553317 PMC: 11567607. DOI: 10.4103/joco.joco_270_23.


Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies.

Kremers J, Huchzermeyer C Vis Neurosci. 2024; 41:E004.

PMID: 39523890 PMC: 11579838. DOI: 10.1017/S0952523824000038.


References
1.
Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher A . In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt. 2002; 7(3):457-63. DOI: 10.1117/1.1482379. View

2.
de Boer J, Cense B, Park B, Pierce M, Tearney G, Bouma B . Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett. 2003; 28(21):2067-9. DOI: 10.1364/ol.28.002067. View

3.
Ishikawa H, Stein D, Wollstein G, Beaton S, Fujimoto J, Schuman J . Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci. 2005; 46(6):2012-7. PMC: 1939723. DOI: 10.1167/iovs.04-0335. View

4.
van Velthoven M, Verbraak F, Yannuzzi L, Rosen R, Podoleanu A, Smet M . Imaging the retina by en face optical coherence tomography. Retina. 2006; 26(2):129-36. DOI: 10.1097/00006982-200602000-00001. View

5.
Tan O, Li G, Lu A, Varma R, Huang D . Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2007; 115(6):949-56. PMC: 2692598. DOI: 10.1016/j.ophtha.2007.08.011. View