» Articles » PMID: 27295501

Large Scale Chromosome Folding Is Stable Against Local Changes in Chromatin Structure

Overview
Specialty Biology
Date 2016 Jun 14
PMID 27295501
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

Citing Articles

Predicting scale-dependent chromatin polymer properties from systematic coarse-graining.

Kadam S, Kumari K, Manivannan V, Dutta S, Mitra M, Padinhateeri R Nat Commun. 2023; 14(1):4108.

PMID: 37433821 PMC: 10336007. DOI: 10.1038/s41467-023-39907-2.


Mesoscale, long-time mixing of chromosomes and its connection to polymer dynamics.

Bajpai G, Safran S PLoS Comput Biol. 2023; 19(5):e1011142.

PMID: 37228178 PMC: 10246856. DOI: 10.1371/journal.pcbi.1011142.


Advances and challenges in CRISPR-based real-time imaging of dynamic genome organization.

Thuma J, Chung Y, Tu L Front Mol Biosci. 2023; 10:1173545.

PMID: 37065447 PMC: 10102487. DOI: 10.3389/fmolb.2023.1173545.


Loops, topologically associating domains, compartments, and territories are elastic and robust to dramatic nuclear volume swelling.

Sanders J, Golloshi R, Das P, Xu Y, Terry P, Nash D Sci Rep. 2022; 12(1):4721.

PMID: 35304523 PMC: 8933507. DOI: 10.1038/s41598-022-08602-5.


The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations.

Rosa A Methods Mol Biol. 2021; 2301:235-258.

PMID: 34415539 DOI: 10.1007/978-1-0716-1390-0_12.


References
1.
Meister P, Gehlen L, Varela E, Kalck V, Gasser S . Visualizing yeast chromosomes and nuclear architecture. Methods Enzymol. 2010; 470:535-67. DOI: 10.1016/S0076-6879(10)70021-5. View

2.
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny L . Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016; 15(9):2038-49. PMC: 4889513. DOI: 10.1016/j.celrep.2016.04.085. View

3.
Marti-Renom M, Mirny L . Bridging the resolution gap in structural modeling of 3D genome organization. PLoS Comput Biol. 2011; 7(7):e1002125. PMC: 3136432. DOI: 10.1371/journal.pcbi.1002125. View

4.
Diesinger P, Kunkel S, Langowski J, Heermann D . Histone depletion facilitates chromatin loops on the kilobasepair scale. Biophys J. 2010; 99(9):2995-3001. PMC: 2965941. DOI: 10.1016/j.bpj.2010.08.039. View

5.
Serra F, Di Stefano M, Spill Y, Cuartero Y, Goodstadt M, Bau D . Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett. 2015; 589(20 Pt A):2987-95. DOI: 10.1016/j.febslet.2015.05.012. View