» Articles » PMID: 27271965

Spatial Metrology of Dopants in Silicon with Exact Lattice Site Precision

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2016 Jun 9
PMID 27271965
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Scaling of Si-based nanoelectronics has reached the regime where device function is affected not only by the presence of individual dopants, but also by their positions in the crystal. Determination of the precise dopant location is an unsolved problem in applications from channel doping in ultrascaled transistors to quantum information processing. Here, we establish a metrology combining low-temperature scanning tunnelling microscopy (STM) imaging and a comprehensive quantum treatment of the dopant-STM system to pinpoint the exact coordinates of the dopant in the Si crystal. The technique is underpinned by the observation that STM images contain atomic-sized features in ordered patterns that are highly sensitive to the STM tip orbital and the absolute dopant lattice site. The demonstrated ability to determine the locations of P and As dopants to 5 nm depths will provide critical information for the design and optimization of nanoscale devices for classical and quantum computing applications.

Citing Articles

Challenges to extracting spatial information about double P dopants in Si from STM images.

Rozanski P, Bryant G, Zielinski M Sci Rep. 2024; 14(1):18062.

PMID: 39103369 PMC: 11300915. DOI: 10.1038/s41598-024-67903-z.


Atomically Precise Manufacturing of Silicon Electronics.

Pitters J, Croshaw J, Achal R, Livadaru L, Ng S, Lupoiu R ACS Nano. 2024; 18(9):6766-6816.

PMID: 38376086 PMC: 10919096. DOI: 10.1021/acsnano.3c10412.


Valley interference and spin exchange at the atomic scale in silicon.

Voisin B, Bocquel J, Tankasala A, Usman M, Salfi J, Rahman R Nat Commun. 2020; 11(1):6124.

PMID: 33257680 PMC: 7705737. DOI: 10.1038/s41467-020-19835-1.


Addressable electron spin resonance using donors and donor molecules in silicon.

Hile S, Fricke L, House M, Peretz E, Chen C, Wang Y Sci Adv. 2018; 4(7):eaaq1459.

PMID: 30027114 PMC: 6044739. DOI: 10.1126/sciadv.aaq1459.


Quantifying atom-scale dopant movement and electrical activation in Si:P monolayers.

Wang X, Hagmann J, Namboodiri P, Wyrick J, Li K, Murray R Nanoscale. 2018; 10(9):4488-4499.

PMID: 29459919 PMC: 11305481. DOI: 10.1039/c7nr07777g.


References
1.
Chen . Tunneling matrix elements in three-dimensional space: The derivative rule and the sum rule. Phys Rev B Condens Matter. 1990; 42(14):8841-8857. DOI: 10.1103/physrevb.42.8841. View

2.
Averin , Korotkov , Likharev . Theory of single-electron charging of quantum wells and dots. Phys Rev B Condens Matter. 1991; 44(12):6199-6211. DOI: 10.1103/physrevb.44.6199. View

3.
Mohiyaddin F, Rahman R, Kalra R, Klimeck G, Hollenberg L, Pla J . Noninvasive spatial metrology of single-atom devices. Nano Lett. 2013; 13(5):1903-9. DOI: 10.1021/nl303863s. View

4.
Pla J, Tan K, Dehollain J, Lim W, Morton J, Zwanenburg F . High-fidelity readout and control of a nuclear spin qubit in silicon. Nature. 2013; 496(7445):334-8. DOI: 10.1038/nature12011. View

5.
Tyryshkin A, Tojo S, Morton J, Riemann H, Abrosimov N, Becker P . Electron spin coherence exceeding seconds in high-purity silicon. Nat Mater. 2011; 11(2):143-7. DOI: 10.1038/nmat3182. View