Electrically Controlling Single-spin Qubits in a Continuous Microwave Field
Authors
Affiliations
Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single (31)P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.
Sarabi B, Huang P, Zimmerman N Phys Rev Appl. 2024; 11(1).
PMID: 39445168 PMC: 11497420. DOI: 10.1103/physrevapplied.11.014001.
Fernandez de Fuentes I, Botzem T, Johnson M, Vaartjes A, Asaad S, Mourik V Nat Commun. 2024; 15(1):1380.
PMID: 38355747 PMC: 11258329. DOI: 10.1038/s41467-024-45368-y.
Electric control of spin transitions at the atomic scale.
Kot P, Ismail M, Drost R, Siebrecht J, Huang H, Ast C Nat Commun. 2023; 14(1):6612.
PMID: 37857623 PMC: 10587172. DOI: 10.1038/s41467-023-42287-2.
An electrically driven single-atom "flip-flop" qubit.
Savytskyy R, Botzem T, Fernandez de Fuentes I, Joecker B, Pla J, Hudson F Sci Adv. 2023; 9(6):eadd9408.
PMID: 36763660 PMC: 9916988. DOI: 10.1126/sciadv.add9408.
Single-electron spin resonance in a nanoelectronic device using a global field.
Vahapoglu E, Slack-Smith J, Leon R, Lim W, Hudson F, Day T Sci Adv. 2021; 7(33).
PMID: 34389538 PMC: 8363148. DOI: 10.1126/sciadv.abg9158.