» Articles » PMID: 27261001

A Genetic Screen for Mutants with Supersized Lipid Droplets in Caenorhabditis Elegans

Overview
Journal G3 (Bethesda)
Date 2016 Jun 5
PMID 27261001
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

To identify genes that regulate the dynamics of lipid droplet (LD) size, we have used the genetically tractable model organism Caenorhabditis elegans, whose wild-type LD population displays a steady state of size with an upper limit of 3 μm in diameter. From a saturated forward genetic screen of 6.7 × 10(5) mutagenized haploid genomes, we isolated 118 mutants with supersized intestinal LDs often reaching 10 μm. These mutants define nine novel complementation groups, in addition to four known genes (maoc-1, dhs-28, daf-22, and prx-10). The nine groups are named drop (lipid droplet abnormal) and categorized into four classes. Class I mutants drop-5 and drop-9, similar to prx-10, are up-regulated in ACS-22-DGAT-2-dependent LD growth, resistant to LD hydrolysis, and defective in peroxisome import. Class II mutants drop-2, drop-3, drop-6, and drop-7 are up-regulated in LD growth, are resistant to LD hydrolysis, but are not defective in peroxisome import. Class III mutants drop-1 and drop-8 are neither up-regulated in LD growth nor resistant to LD hydrolysis, but seemingly up-regulated in LD fusion. Class IV mutant drop-4 is cloned as sams-1 and, different to the other three classes, is ACS-22-independent and hydrolysis-resistant. These four classes of supersized LD mutants should be valuable for mechanistic studies of LD cellular processes including growth, hydrolysis, and fusion.

Citing Articles

High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory.

Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer R J Exp Zool B Mol Dev Evol. 2025; 344(2):94-111.

PMID: 39822045 PMC: 11788882. DOI: 10.1002/jez.b.23284.


Differential roles of lysosomal cholesterol transporters in the development of NMJs.

Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D Life Sci Alliance. 2024; 7(10).

PMID: 39084875 PMC: 11291935. DOI: 10.26508/lsa.202402584.


Microbiota succession influences nematode physiology in a beetle microcosm ecosystem.

Lo W, Sommer R, Han Z Nat Commun. 2024; 15(1):5137.

PMID: 38879542 PMC: 11180206. DOI: 10.1038/s41467-024-49513-5.


4,4-Dimethylsterols Reduces Fat Accumulation via Inhibiting Fatty Acid Amide Hydrolase In Vitro and In Vivo.

Zhang T, Xie L, Guo Y, Wang Z, Guo X, Liu R Research (Wash D C). 2024; 7:0377.

PMID: 38812531 PMC: 11134202. DOI: 10.34133/research.0377.


Identification of genetic suppressors for a BSCL2 lipodystrophy pathogenic variant in Caenorhabditis elegans.

Bai X, Smith H, Golden A Dis Model Mech. 2024; 17(6).

PMID: 38454882 PMC: 11051982. DOI: 10.1242/dmm.050524.


References
1.
Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P . Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol. 2008; 180(3):473-82. PMC: 2234226. DOI: 10.1083/jcb.200711136. View

2.
Xu N, Zhang S, Cole R, McKinney S, Guo F, Haas J . The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J Cell Biol. 2012; 198(5):895-911. PMC: 3432760. DOI: 10.1083/jcb.201201139. View

3.
Zhang P, Na H, Liu Z, Zhang S, Xue P, Chen Y . Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol Cell Proteomics. 2012; 11(8):317-28. PMC: 3412964. DOI: 10.1074/mcp.M111.016345. View

4.
Walker A, Jacobs R, Watts J, Rottiers V, Jiang K, Finnegan D . A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 2011; 147(4):840-52. PMC: 3384509. DOI: 10.1016/j.cell.2011.09.045. View

5.
Soukas A, Carr C, Ruvkun G . Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet. 2013; 9(10):e1003908. PMC: 3812091. DOI: 10.1371/journal.pgen.1003908. View