» Articles » PMID: 27129226

Biofilms and Cyclic Di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas Aeruginosa and Other Bacteria

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2016 Apr 30
PMID 27129226
Citations 260
Authors
Affiliations
Soon will be listed here.
Abstract

The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.

Citing Articles

Harnessing Cyclic di-GMP Signaling: A Strategic Approach to Combat Bacterial Biofilm-Associated Chronic Infections.

Snega Priya P, Meenatchi R, Pasupuleti M, Namasivayam S, Arockiaraj J Curr Microbiol. 2025; 82(3):118.

PMID: 39909925 DOI: 10.1007/s00284-025-04091-7.


Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

Xue Y, Kang X NPJ Biofilms Microbiomes. 2025; 11(1):21.

PMID: 39880834 PMC: 11779841. DOI: 10.1038/s41522-025-00655-4.


c-di-GMP phosphodiesterase ProE interacts with quorum sensing protein PqsE to promote pyocyanin production in .

Feng Q, Dai X, Wu Q, Zhang L, Yang L, Fu Y mSphere. 2025; 10(2):e0102624.

PMID: 39873511 PMC: 11852716. DOI: 10.1128/msphere.01026-24.


Anti-Biofilm Agents to Overcome Antibiotic Resistance.

Hanot M, Lohou E, Sonnet P Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861155 PMC: 11768670. DOI: 10.3390/ph18010092.


Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention.

Azeem K, Fatima S, Ali A, Ubaid A, Husain F, Abid M Life (Basel). 2025; 15(1).

PMID: 39859989 PMC: 11767195. DOI: 10.3390/life15010049.


References
1.
Orr M, Donaldson G, Severin G, Wang J, Sintim H, Waters C . Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A. 2015; 112(36):E5048-57. PMC: 4568665. DOI: 10.1073/pnas.1507245112. View

2.
Grantcharova N, Peters V, Monteiro C, Zakikhany K, Romling U . Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol. 2009; 192(2):456-66. PMC: 2805326. DOI: 10.1128/JB.01826-08. View

3.
Oglesby L, Jain S, Ohman D . Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology (Reading). 2008; 154(Pt 6):1605-1615. PMC: 2650845. DOI: 10.1099/mic.0.2007/015305-0. View

4.
Merighi M, Lee V, Hyodo M, Hayakawa Y, Lory S . The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol. 2007; 65(4):876-95. DOI: 10.1111/j.1365-2958.2007.05817.x. View

5.
Mah T, OToole G . Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001; 9(1):34-9. DOI: 10.1016/s0966-842x(00)01913-2. View