» Articles » PMID: 27119231

Oncogenic ALK Regulates EMT in Non-small Cell Lung Carcinoma Through Repression of the Epithelial Splicing Regulatory Protein 1

Overview
Journal Oncotarget
Specialty Oncology
Date 2016 Apr 28
PMID 27119231
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy.

Citing Articles

ALK in cancer: from function to therapeutic targeting.

Voena C, Ambrogio C, Iannelli F, Chiarle R Nat Rev Cancer. 2025; .

PMID: 40055571 DOI: 10.1038/s41568-025-00797-9.


Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition.

Glaviano A, Lau H, Carter L, Lee E, Lam H, Okina E J Hematol Oncol. 2025; 18(1):6.

PMID: 39806516 PMC: 11733683. DOI: 10.1186/s13045-024-01634-6.


Senescence cell signature associated with poor prognosis, epithelial-mesenchymal transition, solid histology, and spread through air spaces in lung adenocarcinoma.

Koh Y, Han J, Haam S, Lee H Geroscience. 2024; .

PMID: 39546155 DOI: 10.1007/s11357-024-01442-3.


MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells.

Tolue Ghasaban F, Ghanei M, Mahmoudian R, Taghehchian N, Abbaszadegan M, Moghbeli M Heliyon. 2024; 10(9):e30599.

PMID: 38726188 PMC: 11079401. DOI: 10.1016/j.heliyon.2024.e30599.


Systematic analysis of the effects of splicing on the diversity of post-translational modifications in protein isoforms using PTM-POSE.

Crowl S, Coleman M, Chaphiv A, Jordan B, Naegle K bioRxiv. 2024; .

PMID: 38260432 PMC: 10802621. DOI: 10.1101/2024.01.10.575062.


References
1.
De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013; 13(2):97-110. DOI: 10.1038/nrc3447. View

2.
Fischer K, Durrans A, Lee S, Sheng J, Li F, Wong S . Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015; 527(7579):472-6. PMC: 4662610. DOI: 10.1038/nature15748. View

3.
Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nat Rev Cancer. 2007; 7(6):415-28. DOI: 10.1038/nrc2131. View

4.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View

5.
Guo F, Liu X, Qing Q, Sang Y, Feng C, Li X . EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells. Biochem Biophys Res Commun. 2015; 459(3):398-404. DOI: 10.1016/j.bbrc.2015.02.114. View