» Articles » PMID: 27119221

From Chemical Mutagenesis to Post-Expression Mutagenesis: A 50 Year Odyssey

Overview
Specialty Chemistry
Date 2016 Apr 28
PMID 27119221
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Site-directed (gene) mutagenesis has been the most useful method available for the conversion of one amino acid residue of a given protein into another. Until relatively recently, this strategy was limited to the twenty standard amino acids. The ongoing maturation of stop codon suppression and related technologies for unnatural amino acid incorporation has greatly expanded access to nonstandard amino acids by expanding the scope of the translational apparatus. However, the necessity for translation of genetic changes restricts the diversity of residues that may be incorporated. Herein we highlight an alternative approach, termed post-expression mutagenesis, which operates at the level of the very functional biomolecules themselves. Using the lens of retrosynthesis, we highlight prospects for new strategies in protein modification, alteration, and construction which will enable protein science to move beyond the constraints of the "translational filter" and lead to a true synthetic biology.

Citing Articles

A Versatile Method for Site-Specific Chemical Installation of Aromatic Posttranslational Modification Analogs into Proteins.

Lin X, Mandal S, Nithun R, Kolla R, Bouri B, Lashuel H J Am Chem Soc. 2024; 146(37):25788-25798.

PMID: 39224092 PMC: 11421021. DOI: 10.1021/jacs.4c08416.


Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome.

Yao Y, Miodownik I, OHagan M, Jbara M, Afek A Transcription. 2024; 15(3-5):114-138.

PMID: 39033307 PMC: 11810102. DOI: 10.1080/21541264.2024.2379161.


Carbon-Centered Radicals in Protein Manipulation.

Chen X, Josephson B, Davis B ACS Cent Sci. 2023; 9(4):614-638.

PMID: 37122447 PMC: 10141601. DOI: 10.1021/acscentsci.3c00051.


Stereoretentive Post-Translational Protein Editing.

Fu X, Yuan Y, Jha A, Levin N, Giltrap A, Ren J ACS Cent Sci. 2023; 9(3):405-416.

PMID: 36968537 PMC: 10037454. DOI: 10.1021/acscentsci.2c00991.


Modular Diazo Compound for the Bioreversible Late-Stage Modification of Proteins.

Jun J, Petri Y, Erickson L, Raines R J Am Chem Soc. 2023; 145(12):6615-6621.

PMID: 36920197 PMC: 10175043. DOI: 10.1021/jacs.2c11325.


References
1.
Chalker J, Wood C, Davis B . A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. J Am Chem Soc. 2009; 131(45):16346-7. DOI: 10.1021/ja907150m. View

2.
Lee S, Oh S, Yang A, Kim J, Soll D, Lee D . A facile strategy for selective incorporation of phosphoserine into histones. Angew Chem Int Ed Engl. 2013; 52(22):5771-5. PMC: 3775851. DOI: 10.1002/anie.201300531. View

3.
Kim C, Kang M, Kim H, Chatterjee A, Schultz P . Site-specific incorporation of ε-N-crotonyllysine into histones. Angew Chem Int Ed Engl. 2012; 51(29):7246-9. PMC: 3783207. DOI: 10.1002/anie.201203349. View

4.
NEET K, Koshland Jr D . The conversion of serine at the active site of subtilisin to cysteine: a "chemical mutation". Proc Natl Acad Sci U S A. 1966; 56(5):1606-11. PMC: 220044. DOI: 10.1073/pnas.56.5.1606. View

5.
Le D, Cortesi A, Myers S, Burlingame A, Fujimori D . Site-specific and regiospecific installation of methylarginine analogues into recombinant histones and insights into effector protein binding. J Am Chem Soc. 2013; 135(8):2879-82. PMC: 4260808. DOI: 10.1021/ja3108214. View