Pal S, Plapp B
Chem Biol Interact. 2021; 349:109650.
PMID: 34529977
PMC: 8530938.
DOI: 10.1016/j.cbi.2021.109650.
Toplak A, Teixeira de Oliveira E, Schmidt M, Rozeboom H, Wijma H, Meekels L
Comput Struct Biotechnol J. 2021; 19:1277-1287.
PMID: 33717424
PMC: 7921005.
DOI: 10.1016/j.csbj.2021.02.002.
Vantourout J, Adusumalli S, Knouse K, Flood D, Ramirez A, Padial N
J Am Chem Soc. 2020; 142(41):17236-17242.
PMID: 32965106
PMC: 8350984.
DOI: 10.1021/jacs.0c05595.
Thompson R, Muir T
Chem Rev. 2019; 120(6):3051-3126.
PMID: 31774265
PMC: 7101271.
DOI: 10.1021/acs.chemrev.9b00450.
Cen Y, Singh W, Arkin M, Moody T, Huang M, Zhou J
Nat Commun. 2019; 10(1):3198.
PMID: 31324776
PMC: 6642262.
DOI: 10.1038/s41467-019-11155-3.
Concepts of Catalysis in Site-Selective Protein Modifications.
Isenegger P, Davis B
J Am Chem Soc. 2019; 141(20):8005-8013.
PMID: 30974939
PMC: 6535719.
DOI: 10.1021/jacs.8b13187.
Sulfonyl fluorides as privileged warheads in chemical biology.
Narayanan A, Jones L
Chem Sci. 2017; 6(5):2650-2659.
PMID: 28706662
PMC: 5489032.
DOI: 10.1039/c5sc00408j.
From Chemical Mutagenesis to Post-Expression Mutagenesis: A 50 Year Odyssey.
Wright T, Vallee M, Davis B
Angew Chem Int Ed Engl. 2016; 55(20):5896-903.
PMID: 27119221
PMC: 5074284.
DOI: 10.1002/anie.201509310.
Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease.
Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F
Chembiochem. 2015; 16(13):1866-1869.
PMID: 26097079
PMC: 4576821.
DOI: 10.1002/cbic.201500295.
Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad.
Buller A, Townsend C
Proc Natl Acad Sci U S A. 2013; 110(8):E653-61.
PMID: 23382230
PMC: 3581919.
DOI: 10.1073/pnas.1221050110.
Reengineering rate-limiting, millisecond enzyme motions by introduction of an unnatural amino acid.
Watt E, Rivalta I, Whittier S, Batista V, Loria J
Biophys J. 2011; 101(2):411-20.
PMID: 21767494
PMC: 3136797.
DOI: 10.1016/j.bpj.2011.05.039.
Possible involvement of radical intermediates in the inhibition of cysteine proteases by allenyl esters and amides.
Takeuchi Y, Fujiwara T, Shimone Y, Miyataka H, Satoh T, Kirk K
Bioorg Med Chem Lett. 2008; 18(23):6202-5.
PMID: 18951789
PMC: 2607570.
DOI: 10.1016/j.bmcl.2008.10.007.
Redesign of substrate-selectivity determining modules of glutathione transferase A1-1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation.
Nilsson L, Gustafsson A, Mannervik B
Proc Natl Acad Sci U S A. 2000; 97(17):9408-12.
PMID: 10900265
PMC: 16877.
DOI: 10.1073/pnas.150084897.
Bacterial 2,4-dioxygenases: new members of the alpha/beta hydrolase-fold superfamily of enzymes functionally related to serine hydrolases.
Fischer F, Kunne S, Fetzner S
J Bacteriol. 1999; 181(18):5725-33.
PMID: 10482514
PMC: 94093.
DOI: 10.1128/JB.181.18.5725-5733.1999.
Conversion of cysteinyl residues to unnatural amino acid analogs. Examination in a model system.
Schindler J, Viola R
J Protein Chem. 1996; 15(8):737-42.
PMID: 9008297
DOI: 10.1007/BF01887147.
A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases.
Beveridge A
Protein Sci. 1996; 5(7):1355-65.
PMID: 8819168
PMC: 2143470.
DOI: 10.1002/pro.5560050714.
The denaturation and degradation of stable enzymes at high temperatures.
Daniel R, Dines M, Petach H
Biochem J. 1996; 317 ( Pt 1):1-11.
PMID: 8694749
PMC: 1217448.
DOI: 10.1042/bj3170001.
Current problems in mechanistic studies of serine and cysteine proteinases.
Polgar L, Halasz P
Biochem J. 1982; 207(1):1-10.
PMID: 6758764
PMC: 1153816.
DOI: 10.1042/bj2070001.
Kinetics of subtilisin and thiolsubtilisin.
Philipp M, Bender M
Mol Cell Biochem. 1983; 51(1):5-32.
PMID: 6343835
DOI: 10.1007/BF00215583.
The nature of general base-general acid catalysis in serine proteases.
Polgar L, Bender M
Proc Natl Acad Sci U S A. 1969; 64(4):1335-42.
PMID: 5271756
PMC: 223289.
DOI: 10.1073/pnas.64.4.1335.