» Articles » PMID: 27071118

A Descending Dopamine Pathway Conserved from Basal Vertebrates to Mammals

Overview
Specialty Science
Date 2016 Apr 13
PMID 27071118
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson's disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine's role in locomotion.

Citing Articles

Olfactory Projections to Locomotor Control Centers in the Sea Lamprey.

Beausejour P, Veilleux J, Condamine S, Zielinski B, Dubuc R Int J Mol Sci. 2024; 25(17).

PMID: 39273317 PMC: 11395479. DOI: 10.3390/ijms25179370.


Inhibitory basal ganglia nuclei differentially innervate pedunculopontine nucleus subpopulations and evoke opposite motor and valence behaviors.

Fallah M, Udobi K, Swiatek A, Scott C, Evans R bioRxiv. 2024; .

PMID: 39149277 PMC: 11326182. DOI: 10.1101/2024.08.05.606694.


Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury.

Qu W, Wu X, Wu W, Wang Y, Sun Y, Deng L Neural Regen Res. 2024; 20(5):1467-1482.

PMID: 39075913 PMC: 11624882. DOI: 10.4103/NRR.NRR-D-23-01338.


Dopamine-sensitive neurons in the mesencephalic locomotor region control locomotion initiation, stop, and turns.

Juarez Tello A, van der Zouwen C, Dejas L, Duque-Yate J, Boutin J, Medina-Ortiz K Cell Rep. 2024; 43(5):114187.

PMID: 38722743 PMC: 11157412. DOI: 10.1016/j.celrep.2024.114187.


Activation of the spinal and brainstem locomotor networks during free treadmill stepping in rats lacking dopamine transporter.

Veshchitskii A, Shkorbatova P, Mikhalkin A, Fesenko Z, Efimova E, Gainetdinov R Front Mol Neurosci. 2023; 16:1299297.

PMID: 38076209 PMC: 10702542. DOI: 10.3389/fnmol.2023.1299297.


References
1.
Massouh M, Wallman M, Pourcher E, Parent A . The fate of the large striatal interneurons expressing calretinin in Huntington's disease. Neurosci Res. 2008; 62(4):216-24. DOI: 10.1016/j.neures.2008.08.007. View

2.
Sinkala E, McCutcheon J, Schuck M, Schmidt E, Roitman M, Eddington D . Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip. 2012; 12(13):2403-8. PMC: 3371170. DOI: 10.1039/c2lc40168a. View

3.
Pierre J, Mahouche M, Suderevskaya E, Reperant J, WARD R . Immunocytochemical localization of dopamine and its synthetic enzymes in the central nervous system of the lamprey Lampetra fluviatilis. J Comp Neurol. 1997; 380(1):119-35. View

4.
Edley S, Graybiel A . The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol. 1983; 217(2):187-215. DOI: 10.1002/cne.902170207. View

5.
Afonso-Oramas D, Cruz-Muros I, Alvarez de la Rosa D, Abreu P, Giraldez T, Castro-Hernandez J . Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiol Dis. 2009; 36(3):494-508. DOI: 10.1016/j.nbd.2009.09.002. View