» Articles » PMID: 27035839

Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas Aeruginosa

Overview
Journal ACS Chem Biol
Specialties Biochemistry
Biology
Date 2016 Apr 2
PMID 27035839
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

A family of 11 lytic transglycosylases in Pseudomonas aeruginosa, an opportunistic human pathogen, turn over the polymeric bacterial cell wall in the course of its recycling, repair, and maturation. The functions of these enzymes are not fully understood. We disclose herein that SltB3 of P. aeruginosa is an exolytic lytic transglycosylase. We characterize its reaction and its products by the use of peptidoglycan-based molecules. The enzyme recognizes a minimum of four sugars in its substrate but can process a substrate comprised of a peptidoglycan of 20 sugars. The ultimate product of the reaction is N-acetylglucosamine-1,6-anhydro-N-acetylmuramic acid. The X-ray structure of this enzyme is reported for the first time. The enzyme is comprised of four domains, arranged within an annular conformation. The polymeric linear peptidoglycan substrate threads through the opening of the annulus, as it experiences turnover.

Citing Articles

The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function.

Bharadwaj V, Knott B, Stahlberg J, Beckham G, Crowley M J Biol Chem. 2020; 295(14):4477-4487.

PMID: 32054684 PMC: 7135978. DOI: 10.1074/jbc.RA119.011406.


Total Syntheses of Bulgecins A, B, and C and Their Bactericidal Potentiation of the β-Lactam Antibiotics.

Tomoshige S, Dik D, Akabane-Nakata M, Madukoma C, Fisher J, Shrout J ACS Infect Dis. 2018; 4(6):860-867.

PMID: 29716193 PMC: 5996343. DOI: 10.1021/acsinfecdis.8b00105.


Application of the Asymmetric Pictet-Spengler Reaction in the Total Synthesis of Natural Products and Relevant Biologically Active Compounds.

Heravi M, Zadsirjan V, Malmir M Molecules. 2018; 23(4).

PMID: 29670061 PMC: 6017108. DOI: 10.3390/molecules23040943.


Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of .

Lee M, Batuecas M, Tomoshige S, Dominguez-Gil T, Mahasenan K, Dik D Proc Natl Acad Sci U S A. 2018; 115(17):4393-4398.

PMID: 29632171 PMC: 5924928. DOI: 10.1073/pnas.1801298115.


Mechanism of the Escherichia coli MltE lytic transglycosylase, the cell-wall-penetrating enzyme for Type VI secretion system assembly.

Byun B, Mahasenan K, Dik D, Marous D, Speri E, Kumarasiri M Sci Rep. 2018; 8(1):4110.

PMID: 29515200 PMC: 5841429. DOI: 10.1038/s41598-018-22527-y.


References
1.
Battye T, Kontogiannis L, Johnson O, Powell H, Leslie A . iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):271-81. PMC: 3069742. DOI: 10.1107/S0907444910048675. View

2.
van Asselt E, Dijkstra A, Kalk K, TAKACS B, Keck W, Dijkstra B . Crystal structure of Escherichia coli lytic transglycosylase Slt35 reveals a lysozyme-like catalytic domain with an EF-hand. Structure. 1999; 7(10):1167-80. DOI: 10.1016/s0969-2126(00)80051-9. View

3.
Scheurwater E, Reid C, Clarke A . Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol. 2007; 40(4):586-91. DOI: 10.1016/j.biocel.2007.03.018. View

4.
Long F, Vagin A, Young P, Murshudov G . BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr. 2007; 64(Pt 1):125-32. PMC: 2394813. DOI: 10.1107/S0907444907050172. View

5.
Emsley P, Lohkamp B, Scott W, Cowtan K . Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501. PMC: 2852313. DOI: 10.1107/S0907444910007493. View