» Articles » PMID: 26960204

Pathway-Based Genomics Prediction Using Generalized Elastic Net

Overview
Specialty Biology
Date 2016 Mar 10
PMID 26960204
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

We present a novel regularization scheme called The Generalized Elastic Net (GELnet) that incorporates gene pathway information into feature selection. The proposed formulation is applicable to a wide variety of problems in which the interpretation of predictive features using known molecular interactions is desired. The method naturally steers solutions toward sets of mechanistically interlinked genes. Using experiments on synthetic data, we demonstrate that pathway-guided results maintain, and often improve, the accuracy of predictors even in cases where the full gene network is unknown. We apply the method to predict the drug response of breast cancer cell lines. GELnet is able to reveal genetic determinants of sensitivity and resistance for several compounds. In particular, for an EGFR/HER2 inhibitor, it finds a possible trans-differentiation resistance mechanism missed by the corresponding pathway agnostic approach.

Citing Articles

Improvement of the accuracy of breeding value prediction for egg production traits in Muscovy duck using low-coverage whole-genome sequence data.

Ye H, Ji C, Liu X, Bello S, Guo L, Fang X Poult Sci. 2025; 104(2):104812.

PMID: 39817986 PMC: 11786738. DOI: 10.1016/j.psj.2025.104812.


Genomic Prediction of Semen Traits in Boars Incorporating Biological Interactions.

Chen Y, Yang F, Yang Y, Hu Y, Meng Y, Zhang Y Int J Mol Sci. 2024; 25(23).

PMID: 39684865 PMC: 11642674. DOI: 10.3390/ijms252313155.


Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF stem-like tumor cells using artificial neural network in gastric cancer.

Shi Y, An K, ShaoX Zhou , Zhang X, Kan Q, Tian X Heliyon. 2024; 10(21):e38662.

PMID: 39524750 PMC: 11547969. DOI: 10.1016/j.heliyon.2024.e38662.


Multi-output prediction of dose-response curves enables drug repositioning and biomarker discovery.

Gutierrez J, Lau E, Dharmapalan S, Parker M, Chen Y, Alvarez M NPJ Precis Oncol. 2024; 8(1):209.

PMID: 39304771 PMC: 11415488. DOI: 10.1038/s41698-024-00691-x.


Machine Learning-based Development and Validation of a Cell Senescence Predictive and Prognostic Signature in Intrahepatic Cholangiocarcinoma.

Yang R, Sun F, Shi Y, Wang H, Fan Y, Wu Y J Cancer. 2024; 15(9):2810-2828.

PMID: 38577599 PMC: 10988306. DOI: 10.7150/jca.92698.


References
1.
Teschendorff A, Severini S . Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol. 2010; 4:104. PMC: 2925356. DOI: 10.1186/1752-0509-4-104. View

2.
Lee E, Chuang H, Kim J, Ideker T, Lee D . Inferring pathway activity toward precise disease classification. PLoS Comput Biol. 2008; 4(11):e1000217. PMC: 2563693. DOI: 10.1371/journal.pcbi.1000217. View

3.
Dao P, Wang K, Collins C, Ester M, Lapuk A, Sahinalp S . Optimally discriminative subnetwork markers predict response to chemotherapy. Bioinformatics. 2011; 27(13):i205-13. PMC: 3117373. DOI: 10.1093/bioinformatics/btr245. View

4.
Boutros P, Lau S, Pintilie M, Liu N, Shepherd F, Der S . Prognostic gene signatures for non-small-cell lung cancer. Proc Natl Acad Sci U S A. 2009; 106(8):2824-8. PMC: 2636731. DOI: 10.1073/pnas.0809444106. View

5.
Witten D, Tibshirani R . Penalized classification using Fisher's linear discriminant. J R Stat Soc Series B Stat Methodol. 2012; 73(5):753-772. PMC: 3272679. DOI: 10.1111/j.1467-9868.2011.00783.x. View