» Articles » PMID: 26861698

Suppression of RAF/MEK or PI3K Synergizes Cytotoxicity of Receptor Tyrosine Kinase Inhibitors in Glioma Tumor-initiating Cells

Abstract

Background: The majority of glioblastomas have aberrant receptor tyrosine kinase (RTK)/RAS/phosphoinositide 3 kinase (PI3K) signaling pathways and malignant glioma cells are thought to be addicted to these signaling pathways for their survival and proliferation. However, recent studies suggest that monotherapies or inappropriate combination therapies using the molecular targeted drugs have limited efficacy possibly because of tumor heterogeneities, signaling redundancy and crosstalk in intracellular signaling network, indicating necessity of rationale and methods for efficient personalized combination treatments. Here, we evaluated the growth of colonies obtained from glioma tumor-initiating cells (GICs) derived from glioma sphere culture (GSC) in agarose and examined the effects of combination treatments on GICs using targeted drugs that affect the signaling pathways to which most glioma cells are addicted.

Methods: Human GICs were cultured in agarose and treated with inhibitors of RTKs, non-receptor kinases or transcription factors. The colony number and volume were analyzed using a colony counter, and Chou-Talalay combination indices were evaluated. Autophagy and apoptosis were also analyzed. Phosphorylation of proteins was evaluated by reverse phase protein array and immunoblotting.

Results: Increases of colony number and volume in agarose correlated with the Gompertz function. GICs showed diverse drug sensitivity, but inhibitions of RTK and RAF/MEK or PI3K by combinations such as EGFR inhibitor and MEK inhibitor, sorafenib and U0126, erlotinib and BKM120, and EGFR inhibitor and sorafenib showed synergy in different subtypes of GICs. Combination of erlotinib and sorafenib, synergistic in GSC11, induced apoptosis and autophagic cell death associated with suppressed Akt and ERK signaling pathways and decreased nuclear PKM2 and β-catenin in vitro, and tended to improve survival of nude mice bearing GSC11 brain tumor. Reverse phase protein array analysis of the synergistic treatment indicated involvement of not only MEK and PI3K signaling pathways but also others associated with glucose metabolism, fatty acid metabolism, gene transcription, histone methylation, iron transport, stress response, cell cycle, and apoptosis.

Conclusion: Inhibiting RTK and RAF/MEK or PI3K could induce synergistic cytotoxicity but personalization is necessary. Examining colonies in agarose initiated by GICs from each patient may be useful for drug sensitivity testing in personalized cancer therapy.

Citing Articles

Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings.

Begagic E, Pugonja R, Beculic H, celikovic A, Tandir Lihic L, Kadic Vukas S Brain Sci. 2023; 13(11).

PMID: 38002561 PMC: 10669565. DOI: 10.3390/brainsci13111602.


Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies.

Muzyka L, Goff N, Choudhary N, Koltz M Int J Mol Sci. 2023; 24(13).

PMID: 37445633 PMC: 10341773. DOI: 10.3390/ijms241310456.


New thiophene derivative augments the antitumor activity of γ-irradiation against colorectal cancer in mice via anti-inflammatory and pro-apoptotic pathways.

Elbakary N, Hagag S, Ismail M, El-Sayed W Discov Oncol. 2022; 13(1):119.

PMID: 36326938 PMC: 9633918. DOI: 10.1007/s12672-022-00583-1.


Mutational landscape of pan-cancer patients with PIK3CA alterations in Chinese population.

Huang Q, Zhou Y, Wang B, Zhao Y, Zhang F, Ding B BMC Med Genomics. 2022; 15(1):146.

PMID: 35778737 PMC: 9248192. DOI: 10.1186/s12920-022-01297-7.


The Current Status of SSRP1 in Cancer: Tribulation and Road Ahead.

Jia S, Guo B, Wang L, Peng L, Zhang L J Healthc Eng. 2022; 2022:3528786.

PMID: 35463672 PMC: 9020922. DOI: 10.1155/2022/3528786.


References
1.
Akhavan D, Pourzia A, Nourian A, Williams K, Nathanson D, Babic I . De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013; 3(5):534-47. PMC: 3651754. DOI: 10.1158/2159-8290.CD-12-0502. View

2.
Zito C, Jilaveanu L, Anagnostou V, Rimm D, Bepler G, Maira S . Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PLoS One. 2012; 7(2):e31331. PMC: 3280285. DOI: 10.1371/journal.pone.0031331. View

3.
Guiot C, Degiorgis P, Delsanto P, Gabriele P, Deisboeck T . Does tumor growth follow a "universal law"?. J Theor Biol. 2003; 225(2):147-51. DOI: 10.1016/s0022-5193(03)00221-2. View

4.
Peereboom D, Ahluwalia M, Ye X, Supko J, Hilderbrand S, Phuphanich S . NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol. 2013; 15(4):490-6. PMC: 3607264. DOI: 10.1093/neuonc/nos322. View

5.
Glaysher S, Bolton L, Johnson P, Atkey N, Dyson M, Torrance C . Targeting EGFR and PI3K pathways in ovarian cancer. Br J Cancer. 2013; 109(7):1786-94. PMC: 3790180. DOI: 10.1038/bjc.2013.529. View