» Articles » PMID: 38002561

Molecular Targeted Therapies in Glioblastoma Multiforme: A Systematic Overview of Global Trends and Findings

Abstract

This systematic review assesses current molecular targeted therapies for glioblastoma multiforme (GBM), a challenging condition with limited treatment options. Using PRISMA methodology, 166 eligible studies, involving 2526 patients (61.49% male, 38.51% female, with a male-to-female ratio of 1.59/1), were analyzed. In laboratory studies, 52.52% primarily used human glioblastoma cell cultures (HCC), and 43.17% employed animal samples (mainly mice). Clinical participants ranged from 18 to 100 years, with 60.2% using combined therapies and 39.8% monotherapies. Mechanistic categories included Protein Kinase Phosphorylation (41.6%), Cell Cycle-Related Mechanisms (18.1%), Microenvironmental Targets (19.9%), Immunological Targets (4.2%), and Other Mechanisms (16.3%). Key molecular targets included Epidermal Growth Factor Receptor (EGFR) (10.8%), Mammalian Target of Rapamycin (mTOR) (7.2%), Vascular Endothelial Growth Factor (VEGF) (6.6%), and Mitogen-Activated Protein Kinase (MEK) (5.4%). This review provides a comprehensive assessment of molecular therapies for GBM, highlighting their varied efficacy in clinical and laboratory settings, ultimately impacting overall and progression-free survival in GBM management.

Citing Articles

Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment.

Gautam M, Gabrani R Curr Med Sci. 2024; 44(6):1175-1184.

PMID: 39695017 DOI: 10.1007/s11596-024-2950-7.


Complete radiographic response after proton radiation therapy in the re-irradiation of a diffuse high-grade glioma: A case report.

Hassan J, Hyde C, Joiner M, Miller S SAGE Open Med Case Rep. 2024; 12:2050313X241274218.

PMID: 39185065 PMC: 11342437. DOI: 10.1177/2050313X241274218.


A novel tetrahedral framework nucleic acid-derived chemodynamic therapy agent for effective glioblastoma treatment.

Li X, Li L, Fu X, Huang S, Wang Y, Yang Y Cell Prolif. 2024; 58(1):e13736.

PMID: 39180500 PMC: 11693534. DOI: 10.1111/cpr.13736.


Changes in perfusion and permeability in glioblastoma model induced by the anti-angiogenic agents cediranib and thalidomide.

Conq J, Joudiou N, Preat V, Gallez B Acta Oncol. 2024; 63:689-700.

PMID: 39143719 PMC: 11340648. DOI: 10.2340/1651-226X.2024.40116.


Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review.

Begagic E, Beculic H, Dzidic-Krivic A, Kadic Vukas S, Hadzic S, Mekic-Abazovic A Cancers (Basel). 2024; 16(11).

PMID: 38893207 PMC: 11171068. DOI: 10.3390/cancers16112089.


References
1.
McBain C, Lawrie T, Rogozinska E, Kernohan A, Robinson T, Jefferies S . Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev. 2021; 5:CD013579. PMC: 8121043. DOI: 10.1002/14651858.CD013579.pub2. View

2.
Niu M, Cai W, Liu H, Chong Y, Hu W, Gao S . Plumbagin inhibits growth of gliomas in vivo via suppression of FOXM1 expression. J Pharmacol Sci. 2015; 128(3):131-6. DOI: 10.1016/j.jphs.2015.06.005. View

3.
Jaszberenyi M, Schally A, Block N, Zarandi M, Cai R, Vidaurre I . Suppression of the proliferation of human U-87 MG glioblastoma cells by new antagonists of growth hormone-releasing hormone in vivo and in vitro. Target Oncol. 2013; 8(4):281-90. DOI: 10.1007/s11523-013-0264-y. View

4.
Zustovich F, Landi L, Lombardi G, Porta C, Galli L, Fontana A . Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: a phase II study. Anticancer Res. 2013; 33(8):3487-94. View

5.
Takano S, Tsuboi K, Matsumura A, Nose T . Anti-vascular endothelial growth factor antibody and nimustine as combined therapy: effects on tumour growth and angiogenesis in human glioblastoma xenografts. Neuro Oncol. 2003; 5(1):1-7. PMC: 1920668. DOI: 10.1093/neuonc/5.1.1. View